438 lines
14 KiB
C++
438 lines
14 KiB
C++
|
|
//
|
||
|
|
// matrix4.cpp
|
||
|
|
// Kraken
|
||
|
|
//
|
||
|
|
// Copyright 2018 Kearwood Gilbert. All rights reserved.
|
||
|
|
//
|
||
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
||
|
|
// permitted provided that the following conditions are met:
|
||
|
|
//
|
||
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
||
|
|
// conditions and the following disclaimer.
|
||
|
|
//
|
||
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
||
|
|
// of conditions and the following disclaimer in the documentation and/or other materials
|
||
|
|
// provided with the distribution.
|
||
|
|
//
|
||
|
|
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
|
||
|
|
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||
|
|
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
|
||
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
|
|
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
||
|
|
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
//
|
||
|
|
// The views and conclusions contained in the software and documentation are those of the
|
||
|
|
// authors and should not be interpreted as representing official policies, either expressed
|
||
|
|
// or implied, of Kearwood Gilbert.
|
||
|
|
//
|
||
|
|
|
||
|
|
#include "../include/kraken-math.h"
|
||
|
|
|
||
|
|
#include <string.h>
|
||
|
|
|
||
|
|
namespace kraken {
|
||
|
|
|
||
|
|
void Matrix4::init() {
|
||
|
|
// Default constructor - Initialize with an identity matrix
|
||
|
|
static const float IDENTITY_MATRIX[] = {
|
||
|
|
1.0, 0.0, 0.0, 0.0,
|
||
|
|
0.0, 1.0, 0.0, 0.0,
|
||
|
|
0.0, 0.0, 1.0, 0.0,
|
||
|
|
0.0, 0.0, 0.0, 1.0
|
||
|
|
};
|
||
|
|
memcpy(c, IDENTITY_MATRIX, sizeof(float) * 16);
|
||
|
|
|
||
|
|
}
|
||
|
|
|
||
|
|
void Matrix4::init(float *pMat) {
|
||
|
|
memcpy(c, pMat, sizeof(float) * 16);
|
||
|
|
}
|
||
|
|
|
||
|
|
void Matrix4::init(const Vector3 &new_axis_x, const Vector3 &new_axis_y, const Vector3 &new_axis_z, const Vector3 &new_transform)
|
||
|
|
{
|
||
|
|
c[0] = new_axis_x.x; c[1] = new_axis_x.y; c[2] = new_axis_x.z; c[3] = 0.0f;
|
||
|
|
c[4] = new_axis_y.x; c[5] = new_axis_y.y; c[6] = new_axis_y.z; c[7] = 0.0f;
|
||
|
|
c[8] = new_axis_z.x; c[9] = new_axis_z.y; c[10] = new_axis_z.z; c[11] = 0.0f;
|
||
|
|
c[12] = new_transform.x; c[13] = new_transform.y; c[14] = new_transform.z; c[15] = 1.0f;
|
||
|
|
}
|
||
|
|
|
||
|
|
void Matrix4::init(const Matrix4 &m) {
|
||
|
|
memcpy(c, m.c, sizeof(float) * 16);
|
||
|
|
}
|
||
|
|
|
||
|
|
float *Matrix4::getPointer() {
|
||
|
|
return c;
|
||
|
|
}
|
||
|
|
|
||
|
|
float& Matrix4::operator[](unsigned i) {
|
||
|
|
return c[i];
|
||
|
|
}
|
||
|
|
|
||
|
|
float Matrix4::operator[](unsigned i) const {
|
||
|
|
return c[i];
|
||
|
|
}
|
||
|
|
|
||
|
|
// Overload comparison operator
|
||
|
|
bool Matrix4::operator==(const Matrix4 &m) const {
|
||
|
|
return memcmp(c, m.c, sizeof(float) * 16) == 0;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Overload compound multiply operator
|
||
|
|
Matrix4& Matrix4::operator*=(const Matrix4 &m) {
|
||
|
|
float temp[16];
|
||
|
|
|
||
|
|
int x,y;
|
||
|
|
|
||
|
|
for (x=0; x < 4; x++)
|
||
|
|
{
|
||
|
|
for(y=0; y < 4; y++)
|
||
|
|
{
|
||
|
|
temp[y + (x*4)] = (c[x*4] * m.c[y]) +
|
||
|
|
(c[(x*4)+1] * m.c[y+4]) +
|
||
|
|
(c[(x*4)+2] * m.c[y+8]) +
|
||
|
|
(c[(x*4)+3] * m.c[y+12]);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
memcpy(c, temp, sizeof(float) << 4);
|
||
|
|
return *this;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Overload multiply operator
|
||
|
|
Matrix4 Matrix4::operator*(const Matrix4 &m) const {
|
||
|
|
Matrix4 ret = *this;
|
||
|
|
ret *= m;
|
||
|
|
return ret;
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
/* Generate a perspective view matrix using a field of view angle fov,
|
||
|
|
* window aspect ratio, near and far clipping planes */
|
||
|
|
void Matrix4::perspective(float fov, float aspect, float nearz, float farz) {
|
||
|
|
|
||
|
|
memset(c, 0, sizeof(float) * 16);
|
||
|
|
|
||
|
|
float range= tan(fov * 0.5) * nearz;
|
||
|
|
c[0] = (2 * nearz) / ((range * aspect) - (-range * aspect));
|
||
|
|
c[5] = (2 * nearz) / (2 * range);
|
||
|
|
c[10] = -(farz + nearz) / (farz - nearz);
|
||
|
|
c[11] = -1;
|
||
|
|
c[14] = -(2 * farz * nearz) / (farz - nearz);
|
||
|
|
/*
|
||
|
|
float range= atan(fov / 20.0f) * nearz;
|
||
|
|
float r = range * aspect;
|
||
|
|
float t = range * 1.0;
|
||
|
|
|
||
|
|
c[0] = nearz / r;
|
||
|
|
c[5] = nearz / t;
|
||
|
|
c[10] = -(farz + nearz) / (farz - nearz);
|
||
|
|
c[11] = -(2.0 * farz * nearz) / (farz - nearz);
|
||
|
|
c[14] = -1.0;
|
||
|
|
*/
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Perform translation operations on a matrix */
|
||
|
|
void Matrix4::translate(float x, float y, float z) {
|
||
|
|
Matrix4 newMatrix; // Create new identity matrix
|
||
|
|
|
||
|
|
newMatrix.c[12] = x;
|
||
|
|
newMatrix.c[13] = y;
|
||
|
|
newMatrix.c[14] = z;
|
||
|
|
|
||
|
|
*this *= newMatrix;
|
||
|
|
}
|
||
|
|
|
||
|
|
void Matrix4::translate(const Vector3 &v)
|
||
|
|
{
|
||
|
|
translate(v.x, v.y, v.z);
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Rotate a matrix by an angle on a X, Y, or Z axis */
|
||
|
|
void Matrix4::rotate(float angle, AXIS axis) {
|
||
|
|
const int cos1[3] = { 5, 0, 0 }; // cos(angle)
|
||
|
|
const int cos2[3] = { 10, 10, 5 }; // cos(angle)
|
||
|
|
const int sin1[3] = { 9, 2, 4 }; // -sin(angle)
|
||
|
|
const int sin2[3] = { 6, 8, 1 }; // sin(angle)
|
||
|
|
|
||
|
|
/*
|
||
|
|
X_AXIS:
|
||
|
|
|
||
|
|
1, 0, 0, 0
|
||
|
|
0, cos(angle), -sin(angle), 0
|
||
|
|
0, sin(angle), cos(angle), 0
|
||
|
|
0, 0, 0, 1
|
||
|
|
|
||
|
|
Y_AXIS:
|
||
|
|
|
||
|
|
cos(angle), 0, -sin(angle), 0
|
||
|
|
0, 1, 0, 0
|
||
|
|
sin(angle), 0, cos(angle), 0
|
||
|
|
0, 0, 0, 1
|
||
|
|
|
||
|
|
Z_AXIS:
|
||
|
|
|
||
|
|
cos(angle), -sin(angle), 0, 0
|
||
|
|
sin(angle), cos(angle), 0, 0
|
||
|
|
0, 0, 1, 0
|
||
|
|
0, 0, 0, 1
|
||
|
|
|
||
|
|
*/
|
||
|
|
|
||
|
|
Matrix4 newMatrix; // Create new identity matrix
|
||
|
|
|
||
|
|
newMatrix.c[cos1[axis]] = cos(angle);
|
||
|
|
newMatrix.c[sin1[axis]] = -sin(angle);
|
||
|
|
newMatrix.c[sin2[axis]] = -newMatrix.c[sin1[axis]];
|
||
|
|
newMatrix.c[cos2[axis]] = newMatrix.c[cos1[axis]];
|
||
|
|
|
||
|
|
*this *= newMatrix;
|
||
|
|
}
|
||
|
|
|
||
|
|
void Matrix4::rotate(const Quaternion &q)
|
||
|
|
{
|
||
|
|
*this *= q.rotationMatrix();
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Scale matrix by separate x, y, and z amounts */
|
||
|
|
void Matrix4::scale(float x, float y, float z) {
|
||
|
|
Matrix4 newMatrix; // Create new identity matrix
|
||
|
|
|
||
|
|
newMatrix.c[0] = x;
|
||
|
|
newMatrix.c[5] = y;
|
||
|
|
newMatrix.c[10] = z;
|
||
|
|
|
||
|
|
*this *= newMatrix;
|
||
|
|
}
|
||
|
|
|
||
|
|
void Matrix4::scale(const Vector3 &v) {
|
||
|
|
scale(v.x, v.y, v.z);
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Scale all dimensions equally */
|
||
|
|
void Matrix4::scale(float s) {
|
||
|
|
scale(s,s,s);
|
||
|
|
}
|
||
|
|
|
||
|
|
// Initialize with a bias matrix
|
||
|
|
void Matrix4::bias() {
|
||
|
|
static const float BIAS_MATRIX[] = {
|
||
|
|
0.5, 0.0, 0.0, 0.0,
|
||
|
|
0.0, 0.5, 0.0, 0.0,
|
||
|
|
0.0, 0.0, 0.5, 0.0,
|
||
|
|
0.5, 0.5, 0.5, 1.0
|
||
|
|
};
|
||
|
|
memcpy(c, BIAS_MATRIX, sizeof(float) * 16);
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
/* Generate an orthographic view matrix */
|
||
|
|
void Matrix4::ortho(float left, float right, float top, float bottom, float nearz, float farz) {
|
||
|
|
memset(c, 0, sizeof(float) * 16);
|
||
|
|
c[0] = 2.0f / (right - left);
|
||
|
|
c[5] = 2.0f / (bottom - top);
|
||
|
|
c[10] = -1.0f / (farz - nearz);
|
||
|
|
c[11] = -nearz / (farz - nearz);
|
||
|
|
c[15] = 1.0f;
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Replace matrix with its inverse */
|
||
|
|
bool Matrix4::invert() {
|
||
|
|
// Based on gluInvertMatrix implementation
|
||
|
|
|
||
|
|
float inv[16], det;
|
||
|
|
int i;
|
||
|
|
|
||
|
|
inv[0] = c[5]*c[10]*c[15] - c[5]*c[11]*c[14] - c[9]*c[6]*c[15]
|
||
|
|
+ c[9]*c[7]*c[14] + c[13]*c[6]*c[11] - c[13]*c[7]*c[10];
|
||
|
|
inv[4] = -c[4]*c[10]*c[15] + c[4]*c[11]*c[14] + c[8]*c[6]*c[15]
|
||
|
|
- c[8]*c[7]*c[14] - c[12]*c[6]*c[11] + c[12]*c[7]*c[10];
|
||
|
|
inv[8] = c[4]*c[9]*c[15] - c[4]*c[11]*c[13] - c[8]*c[5]*c[15]
|
||
|
|
+ c[8]*c[7]*c[13] + c[12]*c[5]*c[11] - c[12]*c[7]*c[9];
|
||
|
|
inv[12] = -c[4]*c[9]*c[14] + c[4]*c[10]*c[13] + c[8]*c[5]*c[14]
|
||
|
|
- c[8]*c[6]*c[13] - c[12]*c[5]*c[10] + c[12]*c[6]*c[9];
|
||
|
|
inv[1] = -c[1]*c[10]*c[15] + c[1]*c[11]*c[14] + c[9]*c[2]*c[15]
|
||
|
|
- c[9]*c[3]*c[14] - c[13]*c[2]*c[11] + c[13]*c[3]*c[10];
|
||
|
|
inv[5] = c[0]*c[10]*c[15] - c[0]*c[11]*c[14] - c[8]*c[2]*c[15]
|
||
|
|
+ c[8]*c[3]*c[14] + c[12]*c[2]*c[11] - c[12]*c[3]*c[10];
|
||
|
|
inv[9] = -c[0]*c[9]*c[15] + c[0]*c[11]*c[13] + c[8]*c[1]*c[15]
|
||
|
|
- c[8]*c[3]*c[13] - c[12]*c[1]*c[11] + c[12]*c[3]*c[9];
|
||
|
|
inv[13] = c[0]*c[9]*c[14] - c[0]*c[10]*c[13] - c[8]*c[1]*c[14]
|
||
|
|
+ c[8]*c[2]*c[13] + c[12]*c[1]*c[10] - c[12]*c[2]*c[9];
|
||
|
|
inv[2] = c[1]*c[6]*c[15] - c[1]*c[7]*c[14] - c[5]*c[2]*c[15]
|
||
|
|
+ c[5]*c[3]*c[14] + c[13]*c[2]*c[7] - c[13]*c[3]*c[6];
|
||
|
|
inv[6] = -c[0]*c[6]*c[15] + c[0]*c[7]*c[14] + c[4]*c[2]*c[15]
|
||
|
|
- c[4]*c[3]*c[14] - c[12]*c[2]*c[7] + c[12]*c[3]*c[6];
|
||
|
|
inv[10] = c[0]*c[5]*c[15] - c[0]*c[7]*c[13] - c[4]*c[1]*c[15]
|
||
|
|
+ c[4]*c[3]*c[13] + c[12]*c[1]*c[7] - c[12]*c[3]*c[5];
|
||
|
|
inv[14] = -c[0]*c[5]*c[14] + c[0]*c[6]*c[13] + c[4]*c[1]*c[14]
|
||
|
|
- c[4]*c[2]*c[13] - c[12]*c[1]*c[6] + c[12]*c[2]*c[5];
|
||
|
|
inv[3] = -c[1]*c[6]*c[11] + c[1]*c[7]*c[10] + c[5]*c[2]*c[11]
|
||
|
|
- c[5]*c[3]*c[10] - c[9]*c[2]*c[7] + c[9]*c[3]*c[6];
|
||
|
|
inv[7] = c[0]*c[6]*c[11] - c[0]*c[7]*c[10] - c[4]*c[2]*c[11]
|
||
|
|
+ c[4]*c[3]*c[10] + c[8]*c[2]*c[7] - c[8]*c[3]*c[6];
|
||
|
|
inv[11] = -c[0]*c[5]*c[11] + c[0]*c[7]*c[9] + c[4]*c[1]*c[11]
|
||
|
|
- c[4]*c[3]*c[9] - c[8]*c[1]*c[7] + c[8]*c[3]*c[5];
|
||
|
|
inv[15] = c[0]*c[5]*c[10] - c[0]*c[6]*c[9] - c[4]*c[1]*c[10]
|
||
|
|
+ c[4]*c[2]*c[9] + c[8]*c[1]*c[6] - c[8]*c[2]*c[5];
|
||
|
|
|
||
|
|
det = c[0]*inv[0] + c[1]*inv[4] + c[2]*inv[8] + c[3]*inv[12];
|
||
|
|
|
||
|
|
if (det == 0) {
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
|
||
|
|
det = 1.0 / det;
|
||
|
|
|
||
|
|
for (i = 0; i < 16; i++) {
|
||
|
|
c[i] = inv[i] * det;
|
||
|
|
}
|
||
|
|
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
void Matrix4::transpose() {
|
||
|
|
float trans[16];
|
||
|
|
for(int x=0; x<4; x++) {
|
||
|
|
for(int y=0; y<4; y++) {
|
||
|
|
trans[x + y * 4] = c[y + x * 4];
|
||
|
|
}
|
||
|
|
}
|
||
|
|
memcpy(c, trans, sizeof(float) * 16);
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Dot Product, returning Vector3 */
|
||
|
|
Vector3 Matrix4::Dot(const Matrix4 &m, const Vector3 &v) {
|
||
|
|
return Vector3::Create(
|
||
|
|
v.c[0] * m.c[0] + v.c[1] * m.c[4] + v.c[2] * m.c[8] + m.c[12],
|
||
|
|
v.c[0] * m.c[1] + v.c[1] * m.c[5] + v.c[2] * m.c[9] + m.c[13],
|
||
|
|
v.c[0] * m.c[2] + v.c[1] * m.c[6] + v.c[2] * m.c[10] + m.c[14]
|
||
|
|
);
|
||
|
|
}
|
||
|
|
|
||
|
|
Vector4 Matrix4::Dot4(const Matrix4 &m, const Vector4 &v) {
|
||
|
|
#ifdef KRAKEN_USE_ARM_NEON
|
||
|
|
|
||
|
|
Vector4 d;
|
||
|
|
asm volatile (
|
||
|
|
"vld1.32 {d0, d1}, [%1] \n\t" //Q0 = v
|
||
|
|
"vld1.32 {d18, d19}, [%0]! \n\t" //Q1 = m
|
||
|
|
"vld1.32 {d20, d21}, [%0]! \n\t" //Q2 = m+4
|
||
|
|
"vld1.32 {d22, d23}, [%0]! \n\t" //Q3 = m+8
|
||
|
|
"vld1.32 {d24, d25}, [%0]! \n\t" //Q4 = m+12
|
||
|
|
|
||
|
|
"vmul.f32 q13, q9, d0[0] \n\t" //Q5 = Q1*Q0[0]
|
||
|
|
"vmla.f32 q13, q10, d0[1] \n\t" //Q5 += Q1*Q0[1]
|
||
|
|
"vmla.f32 q13, q11, d1[0] \n\t" //Q5 += Q2*Q0[2]
|
||
|
|
"vmla.f32 q13, q12, d1[1] \n\t" //Q5 += Q3*Q0[3]
|
||
|
|
|
||
|
|
"vst1.32 {d26, d27}, [%2] \n\t" //Q4 = m+12
|
||
|
|
: /* no output registers */
|
||
|
|
: "r"(m.c), "r"(v.c), "r"(d.c)
|
||
|
|
: "q0", "q9", "q10","q11", "q12", "q13", "memory"
|
||
|
|
);
|
||
|
|
return d;
|
||
|
|
#else
|
||
|
|
return Vector4::Create(
|
||
|
|
v.c[0] * m.c[0] + v.c[1] * m.c[4] + v.c[2] * m.c[8] + m.c[12],
|
||
|
|
v.c[0] * m.c[1] + v.c[1] * m.c[5] + v.c[2] * m.c[9] + m.c[13],
|
||
|
|
v.c[0] * m.c[2] + v.c[1] * m.c[6] + v.c[2] * m.c[10] + m.c[14],
|
||
|
|
v.c[0] * m.c[3] + v.c[1] * m.c[7] + v.c[2] * m.c[11] + m.c[15]
|
||
|
|
);
|
||
|
|
#endif
|
||
|
|
}
|
||
|
|
|
||
|
|
// Dot product without including translation; useful for transforming normals and tangents
|
||
|
|
Vector3 Matrix4::DotNoTranslate(const Matrix4 &m, const Vector3 &v)
|
||
|
|
{
|
||
|
|
return Vector3::Create(
|
||
|
|
v.x * m.c[0] + v.y * m.c[4] + v.z * m.c[8],
|
||
|
|
v.x * m.c[1] + v.y * m.c[5] + v.z * m.c[9],
|
||
|
|
v.x * m.c[2] + v.y * m.c[6] + v.z * m.c[10]
|
||
|
|
);
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Dot Product, returning w component as if it were a Vector4 (This will be deprecated once Vector4 is implemented instead*/
|
||
|
|
float Matrix4::DotW(const Matrix4 &m, const Vector3 &v) {
|
||
|
|
return v.x * m.c[0*4 + 3] + v.y * m.c[1*4 + 3] + v.z * m.c[2*4 + 3] + m.c[3*4 + 3];
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Dot Product followed by W-divide */
|
||
|
|
Vector3 Matrix4::DotWDiv(const Matrix4 &m, const Vector3 &v) {
|
||
|
|
Vector4 r = Dot4(m, Vector4::Create(v, 1.0f));
|
||
|
|
return Vector3::Create(r) / r.w;
|
||
|
|
}
|
||
|
|
|
||
|
|
Matrix4 Matrix4::LookAt(const Vector3 &cameraPos, const Vector3 &lookAtPos, const Vector3 &upDirection)
|
||
|
|
{
|
||
|
|
Matrix4 matLookat;
|
||
|
|
Vector3 lookat_z_axis = lookAtPos - cameraPos;
|
||
|
|
lookat_z_axis.normalize();
|
||
|
|
Vector3 lookat_x_axis = Vector3::Cross(upDirection, lookat_z_axis);
|
||
|
|
lookat_x_axis.normalize();
|
||
|
|
Vector3 lookat_y_axis = Vector3::Cross(lookat_z_axis, lookat_x_axis);
|
||
|
|
|
||
|
|
matLookat.getPointer()[0] = lookat_x_axis.x;
|
||
|
|
matLookat.getPointer()[1] = lookat_y_axis.x;
|
||
|
|
matLookat.getPointer()[2] = lookat_z_axis.x;
|
||
|
|
|
||
|
|
matLookat.getPointer()[4] = lookat_x_axis.y;
|
||
|
|
matLookat.getPointer()[5] = lookat_y_axis.y;
|
||
|
|
matLookat.getPointer()[6] = lookat_z_axis.y;
|
||
|
|
|
||
|
|
matLookat.getPointer()[8] = lookat_x_axis.z;
|
||
|
|
matLookat.getPointer()[9] = lookat_y_axis.z;
|
||
|
|
matLookat.getPointer()[10] = lookat_z_axis.z;
|
||
|
|
|
||
|
|
matLookat.getPointer()[12] = -Vector3::Dot(lookat_x_axis, cameraPos);
|
||
|
|
matLookat.getPointer()[13] = -Vector3::Dot(lookat_y_axis, cameraPos);
|
||
|
|
matLookat.getPointer()[14] = -Vector3::Dot(lookat_z_axis, cameraPos);
|
||
|
|
|
||
|
|
return matLookat;
|
||
|
|
}
|
||
|
|
|
||
|
|
Matrix4 Matrix4::Invert(const Matrix4 &m)
|
||
|
|
{
|
||
|
|
Matrix4 matInvert = m;
|
||
|
|
matInvert.invert();
|
||
|
|
return matInvert;
|
||
|
|
}
|
||
|
|
|
||
|
|
Matrix4 Matrix4::Transpose(const Matrix4 &m)
|
||
|
|
{
|
||
|
|
Matrix4 matTranspose = m;
|
||
|
|
matTranspose.transpose();
|
||
|
|
return matTranspose;
|
||
|
|
}
|
||
|
|
|
||
|
|
Matrix4 Matrix4::Translation(const Vector3 &v)
|
||
|
|
{
|
||
|
|
Matrix4 m;
|
||
|
|
m[12] = v.x;
|
||
|
|
m[13] = v.y;
|
||
|
|
m[14] = v.z;
|
||
|
|
// m.translate(v);
|
||
|
|
return m;
|
||
|
|
}
|
||
|
|
|
||
|
|
Matrix4 Matrix4::Rotation(const Vector3 &v)
|
||
|
|
{
|
||
|
|
Matrix4 m;
|
||
|
|
m.rotate(v.x, X_AXIS);
|
||
|
|
m.rotate(v.y, Y_AXIS);
|
||
|
|
m.rotate(v.z, Z_AXIS);
|
||
|
|
return m;
|
||
|
|
}
|
||
|
|
|
||
|
|
Matrix4 Matrix4::Scaling(const Vector3 &v)
|
||
|
|
{
|
||
|
|
Matrix4 m;
|
||
|
|
m.scale(v);
|
||
|
|
return m;
|
||
|
|
}
|
||
|
|
|
||
|
|
} // namespace kraken
|
||
|
|
|