Files
hydra/src/triangle3.cpp

341 lines
11 KiB
C++
Raw Normal View History

//
// KRTriangle.cpp
2018-04-22 23:11:50 -07:00
// Kraken Engine / Hydra
//
// Copyright 2018 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
2018-04-22 23:11:50 -07:00
#include "../include/hydra.h"
using namespace kraken;
namespace {
bool _intersectSphere(const Vector3 &start, const Vector3 &dir, const Vector3 &sphere_center, float sphere_radius, float &distance)
{
// dir must be normalized
// From: http://archive.gamedev.net/archive/reference/articles/article1026.html
// TODO - Move to another class?
Vector3 Q = sphere_center - start;
float c = Q.magnitude();
float v = Vector3::Dot(Q, dir);
float d = sphere_radius * sphere_radius - (c * c - v * v);
if (d < 0.0) {
// No intersection
return false;
}
// Return the distance to the [first] intersecting point
distance = v - sqrt(d);
if (distance < 0.0f) {
return false;
}
return true;
}
bool _sameSide(const Vector3 &p1, const Vector3 &p2, const Vector3 &a, const Vector3 &b)
{
// TODO - Move to Vector3 class?
// From: http://stackoverflow.com/questions/995445/determine-if-a-3d-point-is-within-a-triangle
Vector3 cp1 = Vector3::Cross(b - a, p1 - a);
Vector3 cp2 = Vector3::Cross(b - a, p2 - a);
if (Vector3::Dot(cp1, cp2) >= 0) return true;
return false;
}
Vector3 _closestPointOnLine(const Vector3 &a, const Vector3 &b, const Vector3 &p)
{
// From: http://stackoverflow.com/questions/995445/determine-if-a-3d-point-is-within-a-triangle
// Determine t (the length of the vector from a to p)
Vector3 c = p - a;
Vector3 V = Vector3::Normalize(b - a);
float d = (a - b).magnitude();
float t = Vector3::Dot(V, c);
// Check to see if t is beyond the extents of the line segment
if (t < 0) return a;
if (t > d) return b;
// Return the point between a and b
return a + V * t;
}
} // anonymous namespace
namespace kraken {
void Triangle3::init(const Vector3 &v1, const Vector3 &v2, const Vector3 &v3)
{
vert[0] = v1;
vert[1] = v2;
vert[2] = v3;
}
void Triangle3::init(const Triangle3 &tri)
{
vert[0] = tri[0];
vert[1] = tri[1];
vert[2] = tri[2];
}
bool Triangle3::operator ==(const Triangle3& b) const
{
return vert[0] == b[0] && vert[1] == b[1] && vert[2] == b[2];
}
bool Triangle3::operator !=(const Triangle3& b) const
{
return vert[0] != b[0] || vert[1] != b[1] || vert[2] != b[2];
}
Vector3& Triangle3::operator[](unsigned int i)
{
return vert[i];
}
Vector3 Triangle3::operator[](unsigned int i) const
{
return vert[i];
}
bool Triangle3::rayCast(const Vector3 &start, const Vector3 &dir, Vector3 &hit_point) const
{
// algorithm based on Dan Sunday's implementation at http://geomalgorithms.com/a06-_intersect-2.html
const float SMALL_NUM = 0.00000001; // anything that avoids division overflow
Vector3 u, v, n; // triangle vectors
Vector3 w0, w; // ray vectors
float r, a, b; // params to calc ray-plane intersect
// get triangle edge vectors and plane normal
u = vert[1] - vert[0];
v = vert[2] - vert[0];
n = Vector3::Cross(u, v); // cross product
if (n == Vector3::Zero()) // triangle is degenerate
return false; // do not deal with this case
w0 = start - vert[0];
a = -Vector3::Dot(n, w0);
b = Vector3::Dot(n,dir);
if (fabs(b) < SMALL_NUM) { // ray is parallel to triangle plane
if (a == 0)
return false; // ray lies in triangle plane
else {
return false; // ray disjoint from plane
}
}
// get intersect point of ray with triangle plane
r = a / b;
if (r < 0.0) // ray goes away from triangle
return false; // => no intersect
// for a segment, also test if (r > 1.0) => no intersect
Vector3 plane_hit_point = start + dir * r; // intersect point of ray and plane
// is plane_hit_point inside triangle?
float uu, uv, vv, wu, wv, D;
uu = Vector3::Dot(u,u);
uv = Vector3::Dot(u,v);
vv = Vector3::Dot(v,v);
w = plane_hit_point - vert[0];
wu = Vector3::Dot(w,u);
wv = Vector3::Dot(w,v);
D = uv * uv - uu * vv;
// get and test parametric coords
float s, t;
s = (uv * wv - vv * wu) / D;
if (s < 0.0 || s > 1.0) // plane_hit_point is outside triangle
return false;
t = (uv * wu - uu * wv) / D;
if (t < 0.0 || (s + t) > 1.0) // plane_hit_point is outside triangle
return false;
// plane_hit_point is inside the triangle
hit_point = plane_hit_point;
return true;
}
Vector3 Triangle3::calculateNormal() const
{
Vector3 v1 = vert[1] - vert[0];
Vector3 v2 = vert[2] - vert[0];
return Vector3::Normalize(Vector3::Cross(v1, v2));
}
Vector3 Triangle3::closestPointOnTriangle(const Vector3 &p) const
{
Vector3 a = vert[0];
Vector3 b = vert[1];
Vector3 c = vert[2];
Vector3 Rab = _closestPointOnLine(a, b, p);
Vector3 Rbc = _closestPointOnLine(b, c, p);
Vector3 Rca = _closestPointOnLine(c, a, p);
// return closest [Rab, Rbc, Rca] to p;
float sd_Rab = (p - Rab).sqrMagnitude();
float sd_Rbc = (p - Rbc).sqrMagnitude();
float sd_Rca = (p - Rca).sqrMagnitude();
if(sd_Rab < sd_Rbc && sd_Rab < sd_Rca) {
return Rab;
} else if(sd_Rbc < sd_Rab && sd_Rbc < sd_Rca) {
return Rbc;
} else {
return Rca;
}
}
bool Triangle3::sphereCast(const Vector3 &start, const Vector3 &dir, float radius, Vector3 &hit_point, float &hit_distance) const
{
// Dir must be normalized
const float SMALL_NUM = 0.001f; // anything that avoids division overflow
Vector3 tri_normal = calculateNormal();
float d = Vector3::Dot(tri_normal, vert[0]);
float e = Vector3::Dot(tri_normal, start) - radius;
float cotangent_distance = e - d;
Vector3 plane_intersect;
float plane_intersect_distance;
float denom = Vector3::Dot(tri_normal, dir);
if(denom > -SMALL_NUM) {
return false; // dir is co-planar with the triangle or going in the direction of the normal; no intersection
}
// Detect an embedded plane, caused by a sphere that is already intersecting the plane.
if(cotangent_distance <= 0 && cotangent_distance >= -radius * 2.0f) {
// Embedded plane - Sphere is already intersecting the plane.
// Use the point closest to the origin of the sphere as the intersection
plane_intersect = start - tri_normal * (cotangent_distance + radius);
plane_intersect_distance = 0.0f;
} else {
// Sphere is not intersecting the plane
// Determine the first point hit by the swept sphere on the triangle's plane
plane_intersect_distance = -(cotangent_distance / denom);
plane_intersect = start + dir * plane_intersect_distance - tri_normal * radius;
}
if(plane_intersect_distance < 0.0f) {
return false;
}
if(containsPoint(plane_intersect)) {
// Triangle contains point
hit_point = plane_intersect;
hit_distance = plane_intersect_distance;
return true;
} else {
// Triangle does not contain point, cast ray back to sphere from closest point on triangle edge or vertice
Vector3 closest_point = closestPointOnTriangle(plane_intersect);
float reverse_hit_distance;
if(_intersectSphere(closest_point, -dir, start, radius, reverse_hit_distance)) {
// Reverse cast hit sphere
hit_distance = reverse_hit_distance;
hit_point = closest_point;
return true;
} else {
// Reverse cast did not hit sphere
return false;
}
}
}
bool Triangle3::containsPoint(const Vector3 &p) const
{
/*
// From: http://stackoverflow.com/questions/995445/determine-if-a-3d-point-is-within-a-triangle
const float SMALL_NUM = 0.00000001f; // anything that avoids division overflow
// Vector3 A = vert[0], B = vert[1], C = vert[2];
if (_sameSide(p, vert[0], vert[1], vert[2]) && _sameSide(p, vert[1], vert[0], vert[2]) && _sameSide(p, vert[2], vert[0], vert[1])) {
Vector3 vc1 = Vector3::Cross(vert[0] - vert[1], vert[0] - vert[2]);
if(fabs(Vector3::Dot(vert[0] - p, vc1)) <= SMALL_NUM) {
return true;
}
}
return false;
*/
// From: http://blogs.msdn.com/b/rezanour/archive/2011/08/07/barycentric-coordinates-and-point-in-triangle-tests.aspx
Vector3 A = vert[0];
Vector3 B = vert[1];
Vector3 C = vert[2];
Vector3 P = p;
// Prepare our barycentric variables
Vector3 u = B - A;
Vector3 v = C - A;
Vector3 w = P - A;
Vector3 vCrossW = Vector3::Cross(v, w);
Vector3 vCrossU = Vector3::Cross(v, u);
// Test sign of r
if (Vector3::Dot(vCrossW, vCrossU) < 0)
return false;
Vector3 uCrossW = Vector3::Cross(u, w);
Vector3 uCrossV = Vector3::Cross(u, v);
// Test sign of t
if (Vector3::Dot(uCrossW, uCrossV) < 0)
return false;
// At this point, we know that r and t and both > 0.
// Therefore, as long as their sum is <= 1, each must be less <= 1
float denom = uCrossV.magnitude();
float r = vCrossW.magnitude() / denom;
float t = uCrossW.magnitude() / denom;
return (r + t <= 1);
}
} // namespace kraken