// // Vector4.cpp // Kraken // // Copyright 2018 Kearwood Gilbert. All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other materials // provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED // WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND // FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON // ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The views and conclusions contained in the software and documentation are those of the // authors and should not be interpreted as representing official policies, either expressed // or implied, of Kearwood Gilbert. // #include "../include/kraken-math.h" namespace kraken { //default constructor void Vector4::init() { x = 0.0f; y = 0.0f; z = 0.0f; w = 0.0f; } Vector4 Vector4::Create() { Vector4 r; r.init(); return r; } void Vector4::init(const Vector4 &v) { x = v.x; y = v.y; z = v.z; w = v.w; } Vector4 Vector4::Create(const Vector4 &v) { Vector4 r; r.init(v); return r; } void Vector4::init(const Vector3 &v, float W) { x = v.x; y = v.y; z = v.z; w = W; } Vector4 Vector4::Create(const Vector3 &v, float W) { Vector4 r; r.init(v, W); return r; } void Vector4::init(float *v) { x = v[0]; y = v[1]; z = v[2]; w = v[3]; } Vector4 Vector4::Create(float *v) { Vector4 r; r.init(v); return r; } void Vector4::init(float v) { x = v; y = v; z = v; w = v; } Vector4 Vector4::Create(float v) { Vector4 r; r.init(v); return r; } void Vector4::init(float X, float Y, float Z, float W) { x = X; y = Y; z = Z; w = W; } Vector4 Vector4::Create(float X, float Y, float Z, float W) { Vector4 r; r.init(X, Y, Z, W); return r; } Vector4 Vector4::Min() { return Vector4::Create(-std::numeric_limits::max()); } Vector4 Vector4::Max() { return Vector4::Create(std::numeric_limits::max()); } Vector4 Vector4::Zero() { return Vector4::Create(); } Vector4 Vector4::One() { return Vector4::Create(1.0f, 1.0f, 1.0f, 1.0f); } Vector4 Vector4::Forward() { return Vector4::Create(0.0f, 0.0f, 1.0f, 1.0f); } Vector4 Vector4::Backward() { return Vector4::Create(0.0f, 0.0f, -1.0f, 1.0f); } Vector4 Vector4::Up() { return Vector4::Create(0.0f, 1.0f, 0.0f, 1.0f); } Vector4 Vector4::Down() { return Vector4::Create(0.0f, -1.0f, 0.0f, 1.0f); } Vector4 Vector4::Left() { return Vector4::Create(-1.0f, 0.0f, 0.0f, 1.0f); } Vector4 Vector4::Right() { return Vector4::Create(1.0f, 0.0f, 0.0f, 1.0f); } Vector4 Vector4::Lerp(const Vector4 &v1, const Vector4 &v2, float d) { return v1 + (v2 - v1) * d; } Vector4 Vector4::Slerp(const Vector4 &v1, const Vector4 &v2, float d) { // From: http://keithmaggio.wordpress.com/2011/02/15/math-magician-lerp-slerp-and-nlerp/ // Dot product - the cosine of the angle between 2 vectors. float dot = Vector4::Dot(v1, v2); // Clamp it to be in the range of Acos() if(dot < -1.0f) dot = -1.0f; if(dot > 1.0f) dot = 1.0f; // Acos(dot) returns the angle between start and end, // And multiplying that by percent returns the angle between // start and the final result. float theta = acos(dot)*d; Vector4 RelativeVec = v2 - v1*dot; RelativeVec.normalize(); // Orthonormal basis // The final result. return ((v1*cos(theta)) + (RelativeVec*sin(theta))); } void Vector4::OrthoNormalize(Vector4 &normal, Vector4 &tangent) { // Gram-Schmidt Orthonormalization normal.normalize(); Vector4 proj = normal * Dot(tangent, normal); tangent = tangent - proj; tangent.normalize(); } Vector4 Vector4::operator +(const Vector4& b) const { return Vector4::Create(x + b.x, y + b.y, z + b.z, w + b.w); } Vector4 Vector4::operator -(const Vector4& b) const { return Vector4::Create(x - b.x, y - b.y, z - b.z, w - b.w); } Vector4 Vector4::operator +() const { return *this; } Vector4 Vector4::operator -() const { return Vector4::Create(-x, -y, -z, -w); } Vector4 Vector4::operator *(const float v) const { return Vector4::Create(x * v, y * v, z * v, w * v); } Vector4 Vector4::operator /(const float v) const { return Vector4::Create(x / v, y / v, z / v, w/ v); } Vector4& Vector4::operator +=(const Vector4& b) { x += b.x; y += b.y; z += b.z; w += b.w; return *this; } Vector4& Vector4::operator -=(const Vector4& b) { x -= b.x; y -= b.y; z -= b.z; w -= b.w; return *this; } Vector4& Vector4::operator *=(const float v) { x *= v; y *= v; z *= v; w *= v; return *this; } Vector4& Vector4::operator /=(const float v) { float inv_v = 1.0f / v; x *= inv_v; y *= inv_v; z *= inv_v; w *= inv_v; return *this; } bool Vector4::operator ==(const Vector4& b) const { return x == b.x && y == b.y && z == b.z && w == b.w; } bool Vector4::operator !=(const Vector4& b) const { return x != b.x || y != b.y || z != b.z || w != b.w; } float& Vector4::operator[](unsigned i) { switch(i) { case 0: return x; case 1: return y; case 2: return z; default: case 3: return w; } } float Vector4::operator[](unsigned i) const { switch(i) { case 0: return x; case 1: return y; case 2: return z; default: case 3: return w; } } float Vector4::sqrMagnitude() const { // calculate the square of the magnitude (useful for comparison of magnitudes without the cost of a sqrt() function) return x * x + y * y + z * z + w * w; } float Vector4::magnitude() const { return sqrtf(x * x + y * y + z * z + w * w); } void Vector4::normalize() { float inv_magnitude = 1.0f / sqrtf(x * x + y * y + z * z + w * w); x *= inv_magnitude; y *= inv_magnitude; z *= inv_magnitude; w *= inv_magnitude; } Vector4 Vector4::Normalize(const Vector4 &v) { float inv_magnitude = 1.0f / sqrtf(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w); return Vector4::Create(v.x * inv_magnitude, v.y * inv_magnitude, v.z * inv_magnitude, v.w * inv_magnitude); } float Vector4::Dot(const Vector4 &v1, const Vector4 &v2) { return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z + v1.w * v2.w; } bool Vector4::operator >(const Vector4& b) const { // Comparison operators are implemented to allow insertion into sorted containers such as std::set if(x != b.x) return x > b.x; if(y != b.y) return y > b.y; if(z != b.z) return z > b.z; if(w != b.w) return w > b.w; return false; } bool Vector4::operator <(const Vector4& b) const { // Comparison operators are implemented to allow insertion into sorted containers such as std::set if(x != b.x) return x < b.x; if(y != b.y) return y < b.y; if(z != b.z) return z < b.z; if(w != b.w) return w < b.w; return false; } } // namespace kraken