Introducing the siren namespace, which will later be broken out into a separate library.

This commit is contained in:
2023-12-03 21:58:10 -08:00
parent 3894209a64
commit 14110e48f1
6 changed files with 52 additions and 46 deletions

View File

@@ -40,6 +40,7 @@
using namespace mimir;
using namespace hydra;
using namespace siren;
KRAudioManager::KRAudioManager(KRContext& context)
: KRResourceManager(context)
@@ -203,9 +204,9 @@ void KRAudioManager::renderReverbImpulseResponse(int impulse_response_offset, in
int fft_size = frame_count * 2;
int fft_size_log2 = frame_count_log2 + 1;
KRDSP::SplitComplex reverb_sample_data_complex = m_workspace[0];
KRDSP::SplitComplex impulse_block_data_complex = m_workspace[1];
KRDSP::SplitComplex conv_data_complex = m_workspace[2];
dsp::SplitComplex reverb_sample_data_complex = m_workspace[0];
dsp::SplitComplex impulse_block_data_complex = m_workspace[1];
dsp::SplitComplex conv_data_complex = m_workspace[2];
int reverb_offset = (m_reverb_input_next_sample + KRENGINE_AUDIO_BLOCK_LENGTH - frame_count);
if (reverb_offset < 0) {
@@ -227,7 +228,7 @@ void KRAudioManager::renderReverbImpulseResponse(int impulse_response_offset, in
memset(reverb_sample_data_complex.realp + frame_count, 0, frame_count * sizeof(float));
memset(reverb_sample_data_complex.imagp, 0, fft_size * sizeof(float));
KRDSP::FFTForward(m_fft_setup[fft_size_log2 - KRENGINE_AUDIO_BLOCK_LOG2N], &reverb_sample_data_complex, fft_size_log2);
dsp::FFTForward(m_fft_setup[fft_size_log2 - KRENGINE_AUDIO_BLOCK_LOG2N], &reverb_sample_data_complex, fft_size_log2);
float scale = 0.5f / fft_size;
@@ -245,7 +246,7 @@ void KRAudioManager::renderReverbImpulseResponse(int impulse_response_offset, in
} else {
// Subsequent samples write to the second half of the FFT input buffer, which is then added to the first half (the second half will be zero'ed out anyways and works as a convenient temporary buffer)
zi.reverb_sample->sample(impulse_response_offset, frame_count, channel, impulse_block_data_complex.realp + frame_count, zi.weight, false);
KRDSP::Accumulate(impulse_block_data_complex.realp, 1, impulse_block_data_complex.realp + frame_count, 1, frame_count);
dsp::Accumulate(impulse_block_data_complex.realp, 1, impulse_block_data_complex.realp + frame_count, 1, frame_count);
}
}
@@ -256,10 +257,10 @@ void KRAudioManager::renderReverbImpulseResponse(int impulse_response_offset, in
KRDSP::FFTForward(m_fft_setup[fft_size_log2 - KRENGINE_AUDIO_BLOCK_LOG2N], &impulse_block_data_complex, fft_size_log2);
KRDSP::Multiply(&reverb_sample_data_complex, &impulse_block_data_complex, &conv_data_complex, fft_size);
KRDSP::FFTInverse(m_fft_setup[fft_size_log2 - KRENGINE_AUDIO_BLOCK_LOG2N], &conv_data_complex, fft_size_log2);
KRDSP::Scale(conv_data_complex.realp, scale, fft_size);
dsp::FFTForward(m_fft_setup[fft_size_log2 - KRENGINE_AUDIO_BLOCK_LOG2N], &impulse_block_data_complex, fft_size_log2);
dsp::Multiply(&reverb_sample_data_complex, &impulse_block_data_complex, &conv_data_complex, fft_size);
dsp::FFTInverse(m_fft_setup[fft_size_log2 - KRENGINE_AUDIO_BLOCK_LOG2N], &conv_data_complex, fft_size_log2);
dsp::Scale(conv_data_complex.realp, scale, fft_size);
int output_offset = (m_output_accumulation_block_start + impulse_response_offset * KRENGINE_MAX_OUTPUT_CHANNELS) % (KRENGINE_REVERB_MAX_SAMPLES * KRENGINE_MAX_OUTPUT_CHANNELS);
@@ -267,7 +268,7 @@ void KRAudioManager::renderReverbImpulseResponse(int impulse_response_offset, in
while (frames_left) {
int frames_to_process = (KRENGINE_REVERB_MAX_SAMPLES * KRENGINE_MAX_OUTPUT_CHANNELS - output_offset) / KRENGINE_MAX_OUTPUT_CHANNELS;
if (frames_to_process > frames_left) frames_to_process = frames_left;
KRDSP::Accumulate(m_output_accumulation + output_offset + channel, KRENGINE_MAX_OUTPUT_CHANNELS,
dsp::Accumulate(m_output_accumulation + output_offset + channel, KRENGINE_MAX_OUTPUT_CHANNELS,
conv_data_complex.realp + fft_size - frames_left, 1,
frames_to_process);
frames_left -= frames_to_process;
@@ -300,7 +301,7 @@ void KRAudioManager::renderReverb()
float reverb_send_level = m_global_reverb_send_level * m_global_gain * source->getReverb() * containment_factor;
if (reverb_send_level > 0.0f) {
source->sample(KRENGINE_AUDIO_BLOCK_LENGTH, 0, reverb_data, reverb_send_level);
KRDSP::Accumulate(reverb_accum, 1, reverb_data, 1, KRENGINE_AUDIO_BLOCK_LENGTH);
dsp::Accumulate(reverb_accum, 1, reverb_data, 1, KRENGINE_AUDIO_BLOCK_LENGTH);
}
}
}
@@ -807,13 +808,13 @@ void KRAudioManager::initHRTF()
Vector2 pos = *itr;
KRAudioSample* sample = getHRTFSample(pos);
for (int channel = 0; channel < 2; channel++) {
KRDSP::SplitComplex spectral;
dsp::SplitComplex spectral;
spectral.realp = m_hrtf_data + sample_index * 1024 + channel * 512;
spectral.imagp = m_hrtf_data + sample_index * 1024 + channel * 512 + 256;
sample->sample(0, 128, channel, spectral.realp, 1.0f, false);
memset(spectral.realp + 128, 0, sizeof(float) * 128);
memset(spectral.imagp, 0, sizeof(float) * 256);
KRDSP::FFTForward(m_fft_setup[8 - KRENGINE_AUDIO_BLOCK_LOG2N], &spectral, 8);
dsp::FFTForward(m_fft_setup[8 - KRENGINE_AUDIO_BLOCK_LOG2N], &spectral, 8);
m_hrtf_spectral[channel][pos] = spectral;
}
sample_index++;
@@ -830,7 +831,7 @@ KRAudioSample* KRAudioManager::getHRTFSample(const Vector2& hrtf_dir)
return get(szName);
}
KRDSP::SplitComplex KRAudioManager::getHRTFSpectral(const Vector2& hrtf_dir, const int channel)
dsp::SplitComplex KRAudioManager::getHRTFSpectral(const Vector2& hrtf_dir, const int channel)
{
Vector2 dir = hrtf_dir;
int sample_channel = channel;
@@ -1021,7 +1022,7 @@ void KRAudioManager::initAudio()
for (int i = KRENGINE_AUDIO_BLOCK_LOG2N; i <= KRENGINE_REVERB_MAX_FFT_LOG2; i++) {
m_fft_setup[i - KRENGINE_AUDIO_BLOCK_LOG2N].create(i);
// FINDME, TODO.. Apple's vDSP only needs one
// KRDSP::FFTWorkspace, initialized with the maximum size
// dsp::FFTWorkspace, initialized with the maximum size
}
// ----====---- Initialize HRTF Engine ----====----
@@ -1575,7 +1576,7 @@ void KRAudioManager::renderAmbient()
if (source_sample) {
for (int channel = 0; channel < KRENGINE_MAX_OUTPUT_CHANNELS; channel++) {
source_sample->sample(getContext().getAudioManager()->getAudioFrame(), KRENGINE_AUDIO_BLOCK_LENGTH, channel, buffer, gain, true);
KRDSP::Accumulate(m_output_accumulation + output_offset + channel, KRENGINE_MAX_OUTPUT_CHANNELS,
dsp::Accumulate(m_output_accumulation + output_offset + channel, KRENGINE_MAX_OUTPUT_CHANNELS,
buffer, 1,
KRENGINE_AUDIO_BLOCK_LENGTH);
}
@@ -1586,10 +1587,10 @@ void KRAudioManager::renderAmbient()
void KRAudioManager::renderHRTF()
{
KRDSP::SplitComplex* hrtf_accum = m_workspace + 0;
KRDSP::SplitComplex* hrtf_impulse = m_workspace + 1;
KRDSP::SplitComplex* hrtf_convolved = m_workspace + 1; // We only need hrtf_impulse or hrtf_convolved at once; we can recycle the buffer
KRDSP::SplitComplex* hrtf_sample = m_workspace + 2;
dsp::SplitComplex* hrtf_accum = m_workspace + 0;
dsp::SplitComplex* hrtf_impulse = m_workspace + 1;
dsp::SplitComplex* hrtf_convolved = m_workspace + 1; // We only need hrtf_impulse or hrtf_convolved at once; we can recycle the buffer
dsp::SplitComplex* hrtf_sample = m_workspace + 2;
int impulse_response_channels = 2;
int hrtf_frames = 128;
@@ -1617,9 +1618,9 @@ void KRAudioManager::renderHRTF()
source->sample(KRENGINE_AUDIO_BLOCK_LENGTH, 0, sample_buffer, 1.0);
float ramp_gain = gain_anticlick;
float ramp_step = (gain - gain_anticlick) / KRENGINE_AUDIO_ANTICLICK_SAMPLES;
KRDSP::ScaleRamp(sample_buffer, ramp_gain, ramp_step, KRENGINE_AUDIO_ANTICLICK_SAMPLES);
dsp::ScaleRamp(sample_buffer, ramp_gain, ramp_step, KRENGINE_AUDIO_ANTICLICK_SAMPLES);
if (KRENGINE_AUDIO_BLOCK_LENGTH > KRENGINE_AUDIO_ANTICLICK_SAMPLES) {
KRDSP::Scale(sample_buffer + KRENGINE_AUDIO_ANTICLICK_SAMPLES, gain, KRENGINE_AUDIO_BLOCK_LENGTH - KRENGINE_AUDIO_ANTICLICK_SAMPLES);
dsp::Scale(sample_buffer + KRENGINE_AUDIO_ANTICLICK_SAMPLES, gain, KRENGINE_AUDIO_BLOCK_LENGTH - KRENGINE_AUDIO_ANTICLICK_SAMPLES);
}
} else {
// Don't need to perform anti-click filtering, so just sample
@@ -1630,7 +1631,7 @@ void KRAudioManager::renderHRTF()
first_source = false;
} else {
// Accumulate samples on subsequent sources
KRDSP::Accumulate(hrtf_sample->realp, 1, sample_buffer, 1, KRENGINE_AUDIO_BLOCK_LENGTH);
dsp::Accumulate(hrtf_sample->realp, 1, sample_buffer, 1, KRENGINE_AUDIO_BLOCK_LENGTH);
}
itr++;
@@ -1650,7 +1651,7 @@ void KRAudioManager::renderHRTF()
memset(hrtf_sample->realp + hrtf_frames, 0, sizeof(float) * hrtf_frames);
memset(hrtf_sample->imagp, 0, sizeof(float) * fft_size);
KRDSP::SplitComplex hrtf_spectral;
dsp::SplitComplex hrtf_spectral;
if (m_high_quality_hrtf) {
// High quality, interpolated HRTF
@@ -1667,9 +1668,9 @@ void KRAudioManager::renderHRTF()
for (int i = 0; i < 1 /*4 */; i++) {
if (mix[i] > 0.0f) {
KRDSP::SplitComplex hrtf_impulse_sample = getHRTFSpectral(dir[i], channel);
KRDSP::ScaleCopy(&hrtf_impulse_sample, mix[i], hrtf_impulse, fft_size);
KRDSP::Accumulate(hrtf_accum, hrtf_impulse, fft_size);
dsp::SplitComplex hrtf_impulse_sample = getHRTFSpectral(dir[i], channel);
dsp::ScaleCopy(&hrtf_impulse_sample, mix[i], hrtf_impulse, fft_size);
dsp::Accumulate(hrtf_accum, hrtf_impulse, fft_size);
}
}
} else {
@@ -1679,17 +1680,17 @@ void KRAudioManager::renderHRTF()
float scale = 0.5f / fft_size;
KRDSP::FFTForward(m_fft_setup[fft_size_log2 - KRENGINE_AUDIO_BLOCK_LOG2N], hrtf_sample, fft_size_log2);
KRDSP::Multiply(hrtf_sample, &hrtf_spectral, hrtf_convolved, fft_size);
KRDSP::FFTInverse(m_fft_setup[fft_size_log2 - KRENGINE_AUDIO_BLOCK_LOG2N], hrtf_convolved, fft_size_log2);
KRDSP::Scale(hrtf_convolved->realp, scale, fft_size);
dsp::FFTForward(m_fft_setup[fft_size_log2 - KRENGINE_AUDIO_BLOCK_LOG2N], hrtf_sample, fft_size_log2);
dsp::Multiply(hrtf_sample, &hrtf_spectral, hrtf_convolved, fft_size);
dsp::FFTInverse(m_fft_setup[fft_size_log2 - KRENGINE_AUDIO_BLOCK_LOG2N], hrtf_convolved, fft_size_log2);
dsp::Scale(hrtf_convolved->realp, scale, fft_size);
int output_offset = (m_output_accumulation_block_start) % (KRENGINE_REVERB_MAX_SAMPLES * KRENGINE_MAX_OUTPUT_CHANNELS);
int frames_left = fft_size;
while (frames_left) {
int frames_to_process = (KRENGINE_REVERB_MAX_SAMPLES * KRENGINE_MAX_OUTPUT_CHANNELS - output_offset) / KRENGINE_MAX_OUTPUT_CHANNELS;
if (frames_to_process > frames_left) frames_to_process = frames_left;
KRDSP::Accumulate(m_output_accumulation + output_offset + channel, KRENGINE_MAX_OUTPUT_CHANNELS,
dsp::Accumulate(m_output_accumulation + output_offset + channel, KRENGINE_MAX_OUTPUT_CHANNELS,
hrtf_convolved->realp + fft_size - frames_left, 1,
frames_to_process);
frames_left -= frames_to_process;

View File

@@ -204,7 +204,7 @@ private:
void renderAudio(UInt32 inNumberFrames, AudioBufferList* ioData);
#endif
KRDSP::FFTWorkspace m_fft_setup[KRENGINE_REVERB_MAX_FFT_LOG2 - KRENGINE_AUDIO_BLOCK_LOG2N + 1];
siren::dsp::FFTWorkspace m_fft_setup[KRENGINE_REVERB_MAX_FFT_LOG2 - KRENGINE_AUDIO_BLOCK_LOG2N + 1];
__int64_t m_audio_frame; // Number of audio frames processed since the start of the application
@@ -220,7 +220,7 @@ private:
int m_output_sample;
float* m_workspace_data;
KRDSP::SplitComplex m_workspace[3];
siren::dsp::SplitComplex m_workspace[3];
float* getBlockAddress(int block_offset);
void renderBlock();
@@ -233,12 +233,12 @@ private:
std::vector<hydra::Vector2> m_hrtf_sample_locations;
float* m_hrtf_data;
unordered_map<hydra::Vector2, KRDSP::SplitComplex> m_hrtf_spectral[2];
unordered_map<hydra::Vector2, siren::dsp::SplitComplex> m_hrtf_spectral[2];
hydra::Vector2 getNearestHRTFSample(const hydra::Vector2& dir);
void getHRTFMix(const hydra::Vector2& dir, hydra::Vector2& hrtf1, hydra::Vector2& hrtf2, hydra::Vector2& hrtf3, hydra::Vector2& hrtf4, float& mix1, float& mix2, float& mix3, float& mix4);
KRAudioSample* getHRTFSample(const hydra::Vector2& hrtf_dir);
KRDSP::SplitComplex getHRTFSpectral(const hydra::Vector2& hrtf_dir, const int channel);
siren::dsp::SplitComplex getHRTFSpectral(const hydra::Vector2& hrtf_dir, const int channel);
unordered_map<std::string, siren_ambient_zone_weight_info> m_ambient_zone_weights;
float m_ambient_zone_total_weight = 0.0f; // For normalizing zone weights

View File

@@ -186,7 +186,7 @@ void KRAudioSample::sample(__int64_t frame_offset, int frame_count, int channel,
if (frames_to_copy > frames_left) frames_to_copy = frames_left;
if (frames_to_copy > 0) {
signed short* source_data = source_buffer->getFrameData() + buffer_offset * m_channelsPerFrame + c;
KRDSP::Int16ToFloat(source_data, m_channelsPerFrame, buffer + processed_frames, 1, frames_to_copy);
siren::dsp::Int16ToFloat(source_data, m_channelsPerFrame, buffer + processed_frames, 1, frames_to_copy);
//memcpy(buffer + processed_frames, source_buffer->getFrameData() + buffer_offset, frames_to_copy * m_channelsPerFrame * sizeof(float));
processed_frames += frames_to_copy;
}
@@ -197,7 +197,7 @@ void KRAudioSample::sample(__int64_t frame_offset, int frame_count, int channel,
}
float scale = amplitude / 32768.0f;
KRDSP::Scale(buffer, scale, frame_count);
siren::dsp::Scale(buffer, scale, frame_count);
}
}

View File

@@ -1,5 +1,5 @@
//
// KRDSP.h
// dsp.h
// Kraken Engine
//
// Copyright 2023 Kearwood Gilbert. All rights reserved.
@@ -32,8 +32,8 @@
#pragma once
#include "KREngine-common.h"
namespace KRDSP {
namespace siren {
namespace dsp {
#ifdef __APPLE__
#define KRDSP_APPLE_VDSP
@@ -91,4 +91,5 @@ void Accumulate(float* buffer, size_t bufferStride, const float* buffer2, size_t
void Accumulate(SplitComplex* buffer, const SplitComplex* buffer2, size_t count);
void Multiply(const SplitComplex* a, const SplitComplex* b, SplitComplex* c, size_t count);
} // namespace KRDSP
} // namespace dsp
} // namespace siren

View File

@@ -35,7 +35,8 @@
#include "KREngine-common.h"
namespace KRDSP {
namespace siren {
namespace dsp {
FFTWorkspace::FFTWorkspace()
{
@@ -202,6 +203,7 @@ void Multiply(const SplitComplex* a, const SplitComplex* b, SplitComplex* c, siz
}
}
} // namespace KRDSP
} // namespace dsp
} // namespace siren
#endif // KRDSP_SLOW

View File

@@ -35,7 +35,8 @@
#include <Accelerate/Accelerate.h>
namespace KRDSP {
namespace siren {
namespace dsp {
@@ -114,6 +115,7 @@ void Multiply(const SplitComplex* a, const SplitComplex* b, SplitComplex* c, siz
vDSP_zvmul(a, 1, b, 1, c, 1, count, 1);
}
} // namespace KRDSP
} // namespace dsp
} // namespace siren
#endif // KRDSP_APPLE_VDSP