Implemented KRBundle's

Implementation of logic to allow dynamic loading and unloading of meshes and models for scenes larger than RAM in progress

--HG--
extra : convert_revision : svn%3A7752d6cf-9f14-4ad2-affc-04f1e67b81a5/trunk%4090
This commit is contained in:
kearwood
2012-09-11 03:06:35 +00:00
parent c7b7c20310
commit 34c7dc7b53
57 changed files with 1841 additions and 1089 deletions

View File

@@ -74,34 +74,31 @@ void KRInstance::loadModel() {
#if TARGET_OS_IPHONE
bool KRInstance::render(KRCamera *pCamera, KRContext *pContext, KRBoundingVolume &frustrumVolume, KRMat4 &viewMatrix, KRVector3 &cameraPosition, KRVector3 &lightDirection, KRMat4 *pShadowMatrices, GLuint *shadowDepthTextures, int cShadowBuffers, KRNode::RenderPass renderPass) {
void KRInstance::render(KRCamera *pCamera, KRContext *pContext, KRBoundingVolume &frustrumVolume, KRMat4 &viewMatrix, KRVector3 &cameraPosition, KRVector3 &lightDirection, KRMat4 *pShadowMatrices, GLuint *shadowDepthTextures, int cShadowBuffers, KRNode::RenderPass renderPass) {
bool bRendered = KRNode::render(pCamera, pContext, frustrumVolume, viewMatrix, cameraPosition, lightDirection, pShadowMatrices, shadowDepthTextures, cShadowBuffers, renderPass);
KRNode::render(pCamera, pContext, frustrumVolume, viewMatrix, cameraPosition, lightDirection, pShadowMatrices, shadowDepthTextures, cShadowBuffers, renderPass);
if(renderPass != KRNode::RENDER_PASS_DEFERRED_LIGHTS && (renderPass != KRNode::RENDER_PASS_FORWARD_TRANSPARENT || this->hasTransparency()) && renderPass != KRNode::RENDER_PASS_FLARES) {
// Don't render meshes on second pass of the deferred lighting renderer, as only lights will be applied
loadModel();
KRMat4 projectionMatrix;
if(renderPass != KRNode::RENDER_PASS_SHADOWMAP) {
projectionMatrix = pCamera->getProjectionMatrix();
}
if(m_pModel != NULL && (getExtents(pContext).test_intersect(frustrumVolume) || renderPass == RENDER_PASS_SHADOWMAP)) {
//if(m_pModel != NULL && (getBounds().visible(viewMatrix * projectionMatrix) || renderPass == RENDER_PASS_SHADOWMAP)) {
if(m_pLightMap == NULL && m_lightMap.size()) {
m_pLightMap = pContext->getTextureManager()->getTexture(m_lightMap.c_str());
}
if(cShadowBuffers == 0 && m_pLightMap && pCamera->bEnableLightMap && renderPass != RENDER_PASS_SHADOWMAP) {
int iTextureName = m_pLightMap->getName();
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, iTextureName);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
m_pContext->getTextureManager()->selectTexture(3, m_pLightMap);
}
KRMat4 projectionMatrix;
if(renderPass != RENDER_PASS_SHADOWMAP) {
projectionMatrix = pCamera->getProjectionMatrix();
}
KRMat4 mvpmatrix = m_modelMatrix * viewMatrix * projectionMatrix;
KRMat4 matModelToView = viewMatrix * m_modelMatrix;
matModelToView.transpose();
@@ -113,30 +110,15 @@ bool KRInstance::render(KRCamera *pCamera, KRContext *pContext, KRBoundingVolume
KRVector3 cameraPosObject = KRMat4::Dot(inverseModelMatrix, cameraPosition);
KRVector3 lightDirObject = KRMat4::Dot(inverseModelMatrix, lightDirection);
GLuint occlusionTest,hasBeenTested,theParams = 0;
glGenQueriesEXT(1, &occlusionTest);
glBeginQueryEXT(GL_ANY_SAMPLES_PASSED_EXT, occlusionTest);
m_pModel->render(pCamera, pContext, matModelToView, mvpmatrix, cameraPosObject, lightDirection, pShadowMatrices, shadowDepthTextures, cShadowBuffers, m_pLightMap, renderPass);
glEndQueryEXT(GL_ANY_SAMPLES_PASSED_EXT);
/*
glGetQueryObjectuivEXT(occlusionTest, GL_QUERY_RESULT_AVAILABLE_EXT, &hasBeenTested);
if (hasBeenTested) glGetQueryObjectuivEXT(occlusionTest, GL_QUERY_RESULT_EXT, &theParams);
if (theParams) {
bRendered = true;
}
*/
bRendered = true;
glDeleteQueriesEXT(1, &occlusionTest);
}
}
return bRendered;
}
#endif
void KRInstance::calcExtents(KRContext *pContext) {
void KRInstance::calcExtents(KRContext *pContext)
{
KRNode::calcExtents(pContext);
loadModel();
KRMesh *pMesh = m_pModel->getMesh();
@@ -156,12 +138,47 @@ bool KRInstance::hasTransparency() {
}
}
KRVector3 KRInstance::getMinPoint() {
KRAABB KRInstance::getBounds() {
loadModel();
return KRMat4::Dot(m_modelMatrix, m_pModel->getMesh()->getMinPoint());
KRMesh *pMesh = m_pModel->getMesh();
KRVector3 meshMin = pMesh->getMinPoint();
KRVector3 meshMax = pMesh->getMaxPoint();
KRVector3 min, max;
for(int iCorner=0; iCorner < 8; iCorner++) {
KRVector3 cornerVertex = KRVector3(
(iCorner & 1) == 0 ? meshMin.x : meshMax.x,
(iCorner & 2) == 0 ? meshMin.y : meshMax.y,
(iCorner & 4) == 0 ? meshMin.z : meshMax.z);
cornerVertex = KRMat4::Dot(m_modelMatrix, cornerVertex);
if(iCorner == 0) {
// Prime with first point
min = cornerVertex;
max = cornerVertex;
} else {
if(cornerVertex.x < min.x) {
min.x = cornerVertex.x;
}
if(cornerVertex.y < min.y) {
min.y = cornerVertex.y;
}
if(cornerVertex.z < min.z) {
min.z = cornerVertex.z;
}
if(cornerVertex.x > max.x) {
max.x = cornerVertex.x;
}
if(cornerVertex.y > max.y) {
max.y = cornerVertex.y;
}
if(cornerVertex.z > max.z) {
max.z = cornerVertex.z;
}
}
}
return KRAABB(min, max);
}
KRVector3 KRInstance::getMaxPoint() {
loadModel();
return KRMat4::Dot(m_modelMatrix, m_pModel->getMesh()->getMaxPoint());
}