Updated Subrepos, hydra data types are now POD -- refactored Kraken to match. Eliminated some warnings

This commit is contained in:
2018-07-27 00:18:30 -07:00
parent d31a9b0538
commit 96412e1530
60 changed files with 12557 additions and 16027 deletions

View File

@@ -1,135 +1,135 @@
//
// KRDirectionalLight.cpp
// KREngine
//
// Created by Kearwood Gilbert on 12-04-05.
// Copyright (c) 2012 Kearwood Software. All rights reserved.
//
#include "KREngine-common.h"
#include "KRDirectionalLight.h"
#include "KRShader.h"
#include "KRContext.h"
#include "assert.h"
#include "KRStockGeometry.h"
KRDirectionalLight::KRDirectionalLight(KRScene &scene, std::string name) : KRLight(scene, name)
{
}
KRDirectionalLight::~KRDirectionalLight()
{
}
std::string KRDirectionalLight::getElementName() {
return "directional_light";
}
Vector3 KRDirectionalLight::getWorldLightDirection() {
return Matrix4::Dot(getWorldRotation().rotationMatrix(), getLocalLightDirection());
}
Vector3 KRDirectionalLight::getLocalLightDirection() {
return Vector3::Up(); //&KRF HACK changed from Vector3::Forward(); - to compensate for the way Maya handles post rotation.
}
int KRDirectionalLight::configureShadowBufferViewports(const KRViewport &viewport) {
const float KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE = 1.25f; // Scale to apply to view frustrum bounds so that we don't need to refresh shadows on every frame
int cShadows = 1;
for(int iShadow=0; iShadow < cShadows; iShadow++) {
/*
TODO - Determine if we still need this...
GLfloat shadowMinDepths[3][3] = {{0.0f, 0.0f, 0.0f},{0.0f, 0.0f, 0.0f},{0.0f, 0.05f, 0.3f}};
GLfloat shadowMaxDepths[3][3] = {{0.0f, 0.0f, 1.0f},{0.1f, 0.0f, 0.0f},{0.1f, 0.3f, 1.0f}};
float min_depth = 0.0f;
float max_depth = 1.0f;
*/
AABB worldSpacefrustrumSliceBounds = AABB(Vector3(-1.0f, -1.0f, -1.0f), Vector3(1.0f, 1.0f, 1.0f), Matrix4::Invert(viewport.getViewProjectionMatrix()));
worldSpacefrustrumSliceBounds.scale(KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE);
Vector3 shadowLook = -Vector3::Normalize(getWorldLightDirection());
Vector3 shadowUp(0.0, 1.0, 0.0);
if(Vector3::Dot(shadowUp, shadowLook) > 0.99f) shadowUp = Vector3(0.0, 0.0, 1.0); // Ensure shadow look direction is not parallel with the shadowUp direction
// Matrix4 matShadowView = Matrix4::LookAt(viewport.getCameraPosition() - shadowLook, viewport.getCameraPosition(), shadowUp);
// Matrix4 matShadowProjection = Matrix4();
// matShadowProjection.scale(0.001, 0.001, 0.001);
Matrix4 matShadowView = Matrix4::LookAt(worldSpacefrustrumSliceBounds.center() - shadowLook, worldSpacefrustrumSliceBounds.center(), shadowUp);
Matrix4 matShadowProjection = Matrix4();
AABB shadowSpaceFrustrumSliceBounds = AABB(worldSpacefrustrumSliceBounds.min, worldSpacefrustrumSliceBounds.max, Matrix4::Invert(matShadowProjection));
AABB shadowSpaceSceneBounds = AABB(getScene().getRootOctreeBounds().min, getScene().getRootOctreeBounds().max, Matrix4::Invert(matShadowProjection));
if(shadowSpaceSceneBounds.min.z < shadowSpaceFrustrumSliceBounds.min.z) shadowSpaceFrustrumSliceBounds.min.z = shadowSpaceSceneBounds.min.z; // Include any potential shadow casters that are outside the view frustrum
matShadowProjection.scale(1.0f / shadowSpaceFrustrumSliceBounds.size().x, 1.0f / shadowSpaceFrustrumSliceBounds.size().y, 1.0f / shadowSpaceFrustrumSliceBounds.size().z);
Matrix4 matBias;
matBias.bias();
matShadowProjection *= matBias;
KRViewport newShadowViewport = KRViewport(Vector2(KRENGINE_SHADOW_MAP_WIDTH, KRENGINE_SHADOW_MAP_HEIGHT), matShadowView, matShadowProjection);
AABB prevShadowBounds = AABB(-Vector3::One(), Vector3::One(), Matrix4::Invert(m_shadowViewports[iShadow].getViewProjectionMatrix()));
AABB minimumShadowBounds = AABB(-Vector3::One(), Vector3::One(), Matrix4::Invert(newShadowViewport.getViewProjectionMatrix()));
minimumShadowBounds.scale(1.0f / KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE);
if(!prevShadowBounds.contains(minimumShadowBounds) || !shadowValid[iShadow] || true) { // FINDME, HACK - Re-generating the shadow map every frame. This should only be needed if the shadow contains non-static geometry
m_shadowViewports[iShadow] = newShadowViewport;
shadowValid[iShadow] = false;
fprintf(stderr, "Kraken - Generate shadow maps...\n");
}
}
return 1;
}
void KRDirectionalLight::render(KRCamera *pCamera, std::vector<KRPointLight *> &point_lights, std::vector<KRDirectionalLight *> &directional_lights, std::vector<KRSpotLight *>&spot_lights, const KRViewport &viewport, KRNode::RenderPass renderPass) {
if(m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
KRLight::render(pCamera, point_lights, directional_lights, spot_lights, viewport, renderPass);
if(renderPass == KRNode::RENDER_PASS_DEFERRED_LIGHTS) {
// Lights are rendered on the second pass of the deferred renderer
std::vector<KRDirectionalLight *> this_light;
this_light.push_back(this);
Matrix4 matModelViewInverseTranspose = viewport.getViewMatrix() * getModelMatrix();
matModelViewInverseTranspose.transpose();
matModelViewInverseTranspose.invert();
Vector3 light_direction_view_space = getWorldLightDirection();
light_direction_view_space = Matrix4::Dot(matModelViewInverseTranspose, light_direction_view_space);
light_direction_view_space.normalize();
KRShader *pShader = getContext().getShaderManager()->getShader("light_directional", pCamera, std::vector<KRPointLight *>(), this_light, std::vector<KRSpotLight *>(), 0, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, renderPass);
if(getContext().getShaderManager()->selectShader(*pCamera, pShader, viewport, getModelMatrix(), std::vector<KRPointLight *>(), this_light, std::vector<KRSpotLight *>(), 0, renderPass, Vector3::Zero(), 0.0f, Vector4::Zero())) {
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_DIRECTION_VIEW_SPACE, light_direction_view_space);
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_COLOR, m_color);
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_INTENSITY, m_intensity * 0.01f);
// Disable z-buffer write
GLDEBUG(glDepthMask(GL_FALSE));
// Disable z-buffer test
GLDEBUG(glDisable(GL_DEPTH_TEST));
// Render a full screen quad
m_pContext->getMeshManager()->bindVBO(&getContext().getMeshManager()->KRENGINE_VBO_DATA_2D_SQUARE_VERTICES, 1.0f);
GLDEBUG(glDrawArrays(GL_TRIANGLE_STRIP, 0, 4));
}
}
}
AABB KRDirectionalLight::getBounds()
{
return AABB::Infinite();
}
//
// KRDirectionalLight.cpp
// KREngine
//
// Created by Kearwood Gilbert on 12-04-05.
// Copyright (c) 2012 Kearwood Software. All rights reserved.
//
#include "KREngine-common.h"
#include "KRDirectionalLight.h"
#include "KRShader.h"
#include "KRContext.h"
#include "assert.h"
#include "KRStockGeometry.h"
KRDirectionalLight::KRDirectionalLight(KRScene &scene, std::string name) : KRLight(scene, name)
{
}
KRDirectionalLight::~KRDirectionalLight()
{
}
std::string KRDirectionalLight::getElementName() {
return "directional_light";
}
Vector3 KRDirectionalLight::getWorldLightDirection() {
return Matrix4::Dot(getWorldRotation().rotationMatrix(), getLocalLightDirection());
}
Vector3 KRDirectionalLight::getLocalLightDirection() {
return Vector3::Up(); //&KRF HACK changed from Vector3::Forward(); - to compensate for the way Maya handles post rotation.
}
int KRDirectionalLight::configureShadowBufferViewports(const KRViewport &viewport) {
const float KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE = 1.25f; // Scale to apply to view frustrum bounds so that we don't need to refresh shadows on every frame
int cShadows = 1;
for(int iShadow=0; iShadow < cShadows; iShadow++) {
/*
TODO - Determine if we still need this...
GLfloat shadowMinDepths[3][3] = {{0.0f, 0.0f, 0.0f},{0.0f, 0.0f, 0.0f},{0.0f, 0.05f, 0.3f}};
GLfloat shadowMaxDepths[3][3] = {{0.0f, 0.0f, 1.0f},{0.1f, 0.0f, 0.0f},{0.1f, 0.3f, 1.0f}};
float min_depth = 0.0f;
float max_depth = 1.0f;
*/
AABB worldSpacefrustrumSliceBounds = AABB::Create(Vector3::Create(-1.0f, -1.0f, -1.0f), Vector3::Create(1.0f, 1.0f, 1.0f), Matrix4::Invert(viewport.getViewProjectionMatrix()));
worldSpacefrustrumSliceBounds.scale(KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE);
Vector3 shadowLook = -Vector3::Normalize(getWorldLightDirection());
Vector3 shadowUp = Vector3::Create(0.0, 1.0, 0.0);
if(Vector3::Dot(shadowUp, shadowLook) > 0.99f) shadowUp = Vector3::Create(0.0, 0.0, 1.0); // Ensure shadow look direction is not parallel with the shadowUp direction
// Matrix4 matShadowView = Matrix4::LookAt(viewport.getCameraPosition() - shadowLook, viewport.getCameraPosition(), shadowUp);
// Matrix4 matShadowProjection = Matrix4();
// matShadowProjection.scale(0.001, 0.001, 0.001);
Matrix4 matShadowView = Matrix4::LookAt(worldSpacefrustrumSliceBounds.center() - shadowLook, worldSpacefrustrumSliceBounds.center(), shadowUp);
Matrix4 matShadowProjection = Matrix4();
AABB shadowSpaceFrustrumSliceBounds = AABB::Create(worldSpacefrustrumSliceBounds.min, worldSpacefrustrumSliceBounds.max, Matrix4::Invert(matShadowProjection));
AABB shadowSpaceSceneBounds = AABB::Create(getScene().getRootOctreeBounds().min, getScene().getRootOctreeBounds().max, Matrix4::Invert(matShadowProjection));
if(shadowSpaceSceneBounds.min.z < shadowSpaceFrustrumSliceBounds.min.z) shadowSpaceFrustrumSliceBounds.min.z = shadowSpaceSceneBounds.min.z; // Include any potential shadow casters that are outside the view frustrum
matShadowProjection.scale(1.0f / shadowSpaceFrustrumSliceBounds.size().x, 1.0f / shadowSpaceFrustrumSliceBounds.size().y, 1.0f / shadowSpaceFrustrumSliceBounds.size().z);
Matrix4 matBias;
matBias.bias();
matShadowProjection *= matBias;
KRViewport newShadowViewport = KRViewport(Vector2::Create(KRENGINE_SHADOW_MAP_WIDTH, KRENGINE_SHADOW_MAP_HEIGHT), matShadowView, matShadowProjection);
AABB prevShadowBounds = AABB::Create(-Vector3::One(), Vector3::One(), Matrix4::Invert(m_shadowViewports[iShadow].getViewProjectionMatrix()));
AABB minimumShadowBounds = AABB::Create(-Vector3::One(), Vector3::One(), Matrix4::Invert(newShadowViewport.getViewProjectionMatrix()));
minimumShadowBounds.scale(1.0f / KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE);
if(!prevShadowBounds.contains(minimumShadowBounds) || !shadowValid[iShadow] || true) { // FINDME, HACK - Re-generating the shadow map every frame. This should only be needed if the shadow contains non-static geometry
m_shadowViewports[iShadow] = newShadowViewport;
shadowValid[iShadow] = false;
fprintf(stderr, "Kraken - Generate shadow maps...\n");
}
}
return 1;
}
void KRDirectionalLight::render(KRCamera *pCamera, std::vector<KRPointLight *> &point_lights, std::vector<KRDirectionalLight *> &directional_lights, std::vector<KRSpotLight *>&spot_lights, const KRViewport &viewport, KRNode::RenderPass renderPass) {
if(m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
KRLight::render(pCamera, point_lights, directional_lights, spot_lights, viewport, renderPass);
if(renderPass == KRNode::RENDER_PASS_DEFERRED_LIGHTS) {
// Lights are rendered on the second pass of the deferred renderer
std::vector<KRDirectionalLight *> this_light;
this_light.push_back(this);
Matrix4 matModelViewInverseTranspose = viewport.getViewMatrix() * getModelMatrix();
matModelViewInverseTranspose.transpose();
matModelViewInverseTranspose.invert();
Vector3 light_direction_view_space = getWorldLightDirection();
light_direction_view_space = Matrix4::Dot(matModelViewInverseTranspose, light_direction_view_space);
light_direction_view_space.normalize();
KRShader *pShader = getContext().getShaderManager()->getShader("light_directional", pCamera, std::vector<KRPointLight *>(), this_light, std::vector<KRSpotLight *>(), 0, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, renderPass);
if(getContext().getShaderManager()->selectShader(*pCamera, pShader, viewport, getModelMatrix(), std::vector<KRPointLight *>(), this_light, std::vector<KRSpotLight *>(), 0, renderPass, Vector3::Zero(), 0.0f, Vector4::Zero())) {
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_DIRECTION_VIEW_SPACE, light_direction_view_space);
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_COLOR, m_color);
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_INTENSITY, m_intensity * 0.01f);
// Disable z-buffer write
GLDEBUG(glDepthMask(GL_FALSE));
// Disable z-buffer test
GLDEBUG(glDisable(GL_DEPTH_TEST));
// Render a full screen quad
m_pContext->getMeshManager()->bindVBO(&getContext().getMeshManager()->KRENGINE_VBO_DATA_2D_SQUARE_VERTICES, 1.0f);
GLDEBUG(glDrawArrays(GL_TRIANGLE_STRIP, 0, 4));
}
}
}
AABB KRDirectionalLight::getBounds()
{
return AABB::Infinite();
}