Updated Subrepos, hydra data types are now POD -- refactored Kraken to match. Eliminated some warnings
This commit is contained in:
@@ -1,135 +1,135 @@
|
||||
//
|
||||
// KRDirectionalLight.cpp
|
||||
// KREngine
|
||||
//
|
||||
// Created by Kearwood Gilbert on 12-04-05.
|
||||
// Copyright (c) 2012 Kearwood Software. All rights reserved.
|
||||
//
|
||||
|
||||
#include "KREngine-common.h"
|
||||
|
||||
#include "KRDirectionalLight.h"
|
||||
#include "KRShader.h"
|
||||
#include "KRContext.h"
|
||||
#include "assert.h"
|
||||
#include "KRStockGeometry.h"
|
||||
|
||||
KRDirectionalLight::KRDirectionalLight(KRScene &scene, std::string name) : KRLight(scene, name)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
KRDirectionalLight::~KRDirectionalLight()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
std::string KRDirectionalLight::getElementName() {
|
||||
return "directional_light";
|
||||
}
|
||||
|
||||
Vector3 KRDirectionalLight::getWorldLightDirection() {
|
||||
return Matrix4::Dot(getWorldRotation().rotationMatrix(), getLocalLightDirection());
|
||||
}
|
||||
|
||||
Vector3 KRDirectionalLight::getLocalLightDirection() {
|
||||
return Vector3::Up(); //&KRF HACK changed from Vector3::Forward(); - to compensate for the way Maya handles post rotation.
|
||||
}
|
||||
|
||||
|
||||
int KRDirectionalLight::configureShadowBufferViewports(const KRViewport &viewport) {
|
||||
|
||||
const float KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE = 1.25f; // Scale to apply to view frustrum bounds so that we don't need to refresh shadows on every frame
|
||||
int cShadows = 1;
|
||||
for(int iShadow=0; iShadow < cShadows; iShadow++) {
|
||||
/*
|
||||
TODO - Determine if we still need this...
|
||||
|
||||
GLfloat shadowMinDepths[3][3] = {{0.0f, 0.0f, 0.0f},{0.0f, 0.0f, 0.0f},{0.0f, 0.05f, 0.3f}};
|
||||
GLfloat shadowMaxDepths[3][3] = {{0.0f, 0.0f, 1.0f},{0.1f, 0.0f, 0.0f},{0.1f, 0.3f, 1.0f}};
|
||||
|
||||
float min_depth = 0.0f;
|
||||
float max_depth = 1.0f;
|
||||
*/
|
||||
|
||||
AABB worldSpacefrustrumSliceBounds = AABB(Vector3(-1.0f, -1.0f, -1.0f), Vector3(1.0f, 1.0f, 1.0f), Matrix4::Invert(viewport.getViewProjectionMatrix()));
|
||||
worldSpacefrustrumSliceBounds.scale(KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE);
|
||||
|
||||
Vector3 shadowLook = -Vector3::Normalize(getWorldLightDirection());
|
||||
|
||||
Vector3 shadowUp(0.0, 1.0, 0.0);
|
||||
if(Vector3::Dot(shadowUp, shadowLook) > 0.99f) shadowUp = Vector3(0.0, 0.0, 1.0); // Ensure shadow look direction is not parallel with the shadowUp direction
|
||||
|
||||
// Matrix4 matShadowView = Matrix4::LookAt(viewport.getCameraPosition() - shadowLook, viewport.getCameraPosition(), shadowUp);
|
||||
// Matrix4 matShadowProjection = Matrix4();
|
||||
// matShadowProjection.scale(0.001, 0.001, 0.001);
|
||||
|
||||
Matrix4 matShadowView = Matrix4::LookAt(worldSpacefrustrumSliceBounds.center() - shadowLook, worldSpacefrustrumSliceBounds.center(), shadowUp);
|
||||
Matrix4 matShadowProjection = Matrix4();
|
||||
AABB shadowSpaceFrustrumSliceBounds = AABB(worldSpacefrustrumSliceBounds.min, worldSpacefrustrumSliceBounds.max, Matrix4::Invert(matShadowProjection));
|
||||
AABB shadowSpaceSceneBounds = AABB(getScene().getRootOctreeBounds().min, getScene().getRootOctreeBounds().max, Matrix4::Invert(matShadowProjection));
|
||||
if(shadowSpaceSceneBounds.min.z < shadowSpaceFrustrumSliceBounds.min.z) shadowSpaceFrustrumSliceBounds.min.z = shadowSpaceSceneBounds.min.z; // Include any potential shadow casters that are outside the view frustrum
|
||||
matShadowProjection.scale(1.0f / shadowSpaceFrustrumSliceBounds.size().x, 1.0f / shadowSpaceFrustrumSliceBounds.size().y, 1.0f / shadowSpaceFrustrumSliceBounds.size().z);
|
||||
|
||||
Matrix4 matBias;
|
||||
matBias.bias();
|
||||
matShadowProjection *= matBias;
|
||||
|
||||
KRViewport newShadowViewport = KRViewport(Vector2(KRENGINE_SHADOW_MAP_WIDTH, KRENGINE_SHADOW_MAP_HEIGHT), matShadowView, matShadowProjection);
|
||||
AABB prevShadowBounds = AABB(-Vector3::One(), Vector3::One(), Matrix4::Invert(m_shadowViewports[iShadow].getViewProjectionMatrix()));
|
||||
AABB minimumShadowBounds = AABB(-Vector3::One(), Vector3::One(), Matrix4::Invert(newShadowViewport.getViewProjectionMatrix()));
|
||||
minimumShadowBounds.scale(1.0f / KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE);
|
||||
if(!prevShadowBounds.contains(minimumShadowBounds) || !shadowValid[iShadow] || true) { // FINDME, HACK - Re-generating the shadow map every frame. This should only be needed if the shadow contains non-static geometry
|
||||
m_shadowViewports[iShadow] = newShadowViewport;
|
||||
shadowValid[iShadow] = false;
|
||||
fprintf(stderr, "Kraken - Generate shadow maps...\n");
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void KRDirectionalLight::render(KRCamera *pCamera, std::vector<KRPointLight *> &point_lights, std::vector<KRDirectionalLight *> &directional_lights, std::vector<KRSpotLight *>&spot_lights, const KRViewport &viewport, KRNode::RenderPass renderPass) {
|
||||
|
||||
if(m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
|
||||
|
||||
KRLight::render(pCamera, point_lights, directional_lights, spot_lights, viewport, renderPass);
|
||||
|
||||
if(renderPass == KRNode::RENDER_PASS_DEFERRED_LIGHTS) {
|
||||
// Lights are rendered on the second pass of the deferred renderer
|
||||
|
||||
std::vector<KRDirectionalLight *> this_light;
|
||||
this_light.push_back(this);
|
||||
|
||||
Matrix4 matModelViewInverseTranspose = viewport.getViewMatrix() * getModelMatrix();
|
||||
matModelViewInverseTranspose.transpose();
|
||||
matModelViewInverseTranspose.invert();
|
||||
|
||||
Vector3 light_direction_view_space = getWorldLightDirection();
|
||||
light_direction_view_space = Matrix4::Dot(matModelViewInverseTranspose, light_direction_view_space);
|
||||
light_direction_view_space.normalize();
|
||||
|
||||
KRShader *pShader = getContext().getShaderManager()->getShader("light_directional", pCamera, std::vector<KRPointLight *>(), this_light, std::vector<KRSpotLight *>(), 0, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, renderPass);
|
||||
if(getContext().getShaderManager()->selectShader(*pCamera, pShader, viewport, getModelMatrix(), std::vector<KRPointLight *>(), this_light, std::vector<KRSpotLight *>(), 0, renderPass, Vector3::Zero(), 0.0f, Vector4::Zero())) {
|
||||
|
||||
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_DIRECTION_VIEW_SPACE, light_direction_view_space);
|
||||
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_COLOR, m_color);
|
||||
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_INTENSITY, m_intensity * 0.01f);
|
||||
|
||||
// Disable z-buffer write
|
||||
GLDEBUG(glDepthMask(GL_FALSE));
|
||||
|
||||
// Disable z-buffer test
|
||||
GLDEBUG(glDisable(GL_DEPTH_TEST));
|
||||
|
||||
// Render a full screen quad
|
||||
m_pContext->getMeshManager()->bindVBO(&getContext().getMeshManager()->KRENGINE_VBO_DATA_2D_SQUARE_VERTICES, 1.0f);
|
||||
GLDEBUG(glDrawArrays(GL_TRIANGLE_STRIP, 0, 4));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
AABB KRDirectionalLight::getBounds()
|
||||
{
|
||||
return AABB::Infinite();
|
||||
}
|
||||
//
|
||||
// KRDirectionalLight.cpp
|
||||
// KREngine
|
||||
//
|
||||
// Created by Kearwood Gilbert on 12-04-05.
|
||||
// Copyright (c) 2012 Kearwood Software. All rights reserved.
|
||||
//
|
||||
|
||||
#include "KREngine-common.h"
|
||||
|
||||
#include "KRDirectionalLight.h"
|
||||
#include "KRShader.h"
|
||||
#include "KRContext.h"
|
||||
#include "assert.h"
|
||||
#include "KRStockGeometry.h"
|
||||
|
||||
KRDirectionalLight::KRDirectionalLight(KRScene &scene, std::string name) : KRLight(scene, name)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
KRDirectionalLight::~KRDirectionalLight()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
std::string KRDirectionalLight::getElementName() {
|
||||
return "directional_light";
|
||||
}
|
||||
|
||||
Vector3 KRDirectionalLight::getWorldLightDirection() {
|
||||
return Matrix4::Dot(getWorldRotation().rotationMatrix(), getLocalLightDirection());
|
||||
}
|
||||
|
||||
Vector3 KRDirectionalLight::getLocalLightDirection() {
|
||||
return Vector3::Up(); //&KRF HACK changed from Vector3::Forward(); - to compensate for the way Maya handles post rotation.
|
||||
}
|
||||
|
||||
|
||||
int KRDirectionalLight::configureShadowBufferViewports(const KRViewport &viewport) {
|
||||
|
||||
const float KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE = 1.25f; // Scale to apply to view frustrum bounds so that we don't need to refresh shadows on every frame
|
||||
int cShadows = 1;
|
||||
for(int iShadow=0; iShadow < cShadows; iShadow++) {
|
||||
/*
|
||||
TODO - Determine if we still need this...
|
||||
|
||||
GLfloat shadowMinDepths[3][3] = {{0.0f, 0.0f, 0.0f},{0.0f, 0.0f, 0.0f},{0.0f, 0.05f, 0.3f}};
|
||||
GLfloat shadowMaxDepths[3][3] = {{0.0f, 0.0f, 1.0f},{0.1f, 0.0f, 0.0f},{0.1f, 0.3f, 1.0f}};
|
||||
|
||||
float min_depth = 0.0f;
|
||||
float max_depth = 1.0f;
|
||||
*/
|
||||
|
||||
AABB worldSpacefrustrumSliceBounds = AABB::Create(Vector3::Create(-1.0f, -1.0f, -1.0f), Vector3::Create(1.0f, 1.0f, 1.0f), Matrix4::Invert(viewport.getViewProjectionMatrix()));
|
||||
worldSpacefrustrumSliceBounds.scale(KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE);
|
||||
|
||||
Vector3 shadowLook = -Vector3::Normalize(getWorldLightDirection());
|
||||
|
||||
Vector3 shadowUp = Vector3::Create(0.0, 1.0, 0.0);
|
||||
if(Vector3::Dot(shadowUp, shadowLook) > 0.99f) shadowUp = Vector3::Create(0.0, 0.0, 1.0); // Ensure shadow look direction is not parallel with the shadowUp direction
|
||||
|
||||
// Matrix4 matShadowView = Matrix4::LookAt(viewport.getCameraPosition() - shadowLook, viewport.getCameraPosition(), shadowUp);
|
||||
// Matrix4 matShadowProjection = Matrix4();
|
||||
// matShadowProjection.scale(0.001, 0.001, 0.001);
|
||||
|
||||
Matrix4 matShadowView = Matrix4::LookAt(worldSpacefrustrumSliceBounds.center() - shadowLook, worldSpacefrustrumSliceBounds.center(), shadowUp);
|
||||
Matrix4 matShadowProjection = Matrix4();
|
||||
AABB shadowSpaceFrustrumSliceBounds = AABB::Create(worldSpacefrustrumSliceBounds.min, worldSpacefrustrumSliceBounds.max, Matrix4::Invert(matShadowProjection));
|
||||
AABB shadowSpaceSceneBounds = AABB::Create(getScene().getRootOctreeBounds().min, getScene().getRootOctreeBounds().max, Matrix4::Invert(matShadowProjection));
|
||||
if(shadowSpaceSceneBounds.min.z < shadowSpaceFrustrumSliceBounds.min.z) shadowSpaceFrustrumSliceBounds.min.z = shadowSpaceSceneBounds.min.z; // Include any potential shadow casters that are outside the view frustrum
|
||||
matShadowProjection.scale(1.0f / shadowSpaceFrustrumSliceBounds.size().x, 1.0f / shadowSpaceFrustrumSliceBounds.size().y, 1.0f / shadowSpaceFrustrumSliceBounds.size().z);
|
||||
|
||||
Matrix4 matBias;
|
||||
matBias.bias();
|
||||
matShadowProjection *= matBias;
|
||||
|
||||
KRViewport newShadowViewport = KRViewport(Vector2::Create(KRENGINE_SHADOW_MAP_WIDTH, KRENGINE_SHADOW_MAP_HEIGHT), matShadowView, matShadowProjection);
|
||||
AABB prevShadowBounds = AABB::Create(-Vector3::One(), Vector3::One(), Matrix4::Invert(m_shadowViewports[iShadow].getViewProjectionMatrix()));
|
||||
AABB minimumShadowBounds = AABB::Create(-Vector3::One(), Vector3::One(), Matrix4::Invert(newShadowViewport.getViewProjectionMatrix()));
|
||||
minimumShadowBounds.scale(1.0f / KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE);
|
||||
if(!prevShadowBounds.contains(minimumShadowBounds) || !shadowValid[iShadow] || true) { // FINDME, HACK - Re-generating the shadow map every frame. This should only be needed if the shadow contains non-static geometry
|
||||
m_shadowViewports[iShadow] = newShadowViewport;
|
||||
shadowValid[iShadow] = false;
|
||||
fprintf(stderr, "Kraken - Generate shadow maps...\n");
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void KRDirectionalLight::render(KRCamera *pCamera, std::vector<KRPointLight *> &point_lights, std::vector<KRDirectionalLight *> &directional_lights, std::vector<KRSpotLight *>&spot_lights, const KRViewport &viewport, KRNode::RenderPass renderPass) {
|
||||
|
||||
if(m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
|
||||
|
||||
KRLight::render(pCamera, point_lights, directional_lights, spot_lights, viewport, renderPass);
|
||||
|
||||
if(renderPass == KRNode::RENDER_PASS_DEFERRED_LIGHTS) {
|
||||
// Lights are rendered on the second pass of the deferred renderer
|
||||
|
||||
std::vector<KRDirectionalLight *> this_light;
|
||||
this_light.push_back(this);
|
||||
|
||||
Matrix4 matModelViewInverseTranspose = viewport.getViewMatrix() * getModelMatrix();
|
||||
matModelViewInverseTranspose.transpose();
|
||||
matModelViewInverseTranspose.invert();
|
||||
|
||||
Vector3 light_direction_view_space = getWorldLightDirection();
|
||||
light_direction_view_space = Matrix4::Dot(matModelViewInverseTranspose, light_direction_view_space);
|
||||
light_direction_view_space.normalize();
|
||||
|
||||
KRShader *pShader = getContext().getShaderManager()->getShader("light_directional", pCamera, std::vector<KRPointLight *>(), this_light, std::vector<KRSpotLight *>(), 0, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, renderPass);
|
||||
if(getContext().getShaderManager()->selectShader(*pCamera, pShader, viewport, getModelMatrix(), std::vector<KRPointLight *>(), this_light, std::vector<KRSpotLight *>(), 0, renderPass, Vector3::Zero(), 0.0f, Vector4::Zero())) {
|
||||
|
||||
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_DIRECTION_VIEW_SPACE, light_direction_view_space);
|
||||
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_COLOR, m_color);
|
||||
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_INTENSITY, m_intensity * 0.01f);
|
||||
|
||||
// Disable z-buffer write
|
||||
GLDEBUG(glDepthMask(GL_FALSE));
|
||||
|
||||
// Disable z-buffer test
|
||||
GLDEBUG(glDisable(GL_DEPTH_TEST));
|
||||
|
||||
// Render a full screen quad
|
||||
m_pContext->getMeshManager()->bindVBO(&getContext().getMeshManager()->KRENGINE_VBO_DATA_2D_SQUARE_VERTICES, 1.0f);
|
||||
GLDEBUG(glDrawArrays(GL_TRIANGLE_STRIP, 0, 4));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
AABB KRDirectionalLight::getBounds()
|
||||
{
|
||||
return AABB::Infinite();
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user