// // KRDataBlock.cpp // KREngine // // Copyright 2012 Kearwood Gilbert. All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other materials // provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED // WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND // FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON // ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The views and conclusions contained in the software and documentation are those of the // authors and should not be interpreted as representing official policies, either expressed // or implied, of Kearwood Gilbert. // #include "KRDataBlock.h" #include "KREngine-common.h" #include "KRResource.h" #include int KRAKEN_MEM_PAGE_SIZE = getpagesize(); #define KRAKEN_MEM_ROUND_DOWN_PAGE(x) ((x) & ~(KRAKEN_MEM_PAGE_SIZE - 1)) #define KRAKEN_MEM_ROUND_UP_PAGE(x) ((((x) - 1) & ~(KRAKEN_MEM_PAGE_SIZE - 1)) + KRAKEN_MEM_PAGE_SIZE) int m_mapCount = 0; size_t m_mapSize = 0; size_t m_mapOverhead = 0; KRDataBlock::KRDataBlock() { m_data = NULL; m_data_size = 0; m_data_offset = 0; m_fdPackFile = 0; m_fileName = ""; m_mmapData = NULL; m_fileOwnerDataBlock = NULL; m_bMalloced = false; m_lockCount = 0; m_bReadOnly = false; } KRDataBlock::KRDataBlock(void *data, size_t size) { m_data = NULL; m_data_size = 0; m_data_offset = 0; m_fdPackFile = 0; m_fileName = ""; m_mmapData = NULL; m_fileOwnerDataBlock = NULL; m_bMalloced = false; m_lockCount = 0; m_bReadOnly = false; load(data, size); } KRDataBlock::~KRDataBlock() { unload(); } // Unload a file, releasing any mmap'ed file handles or malloc'ed ram that was in use void KRDataBlock::unload() { assert(m_lockCount == 0); if(m_fdPackFile) { // Memory mapped file if(m_fileOwnerDataBlock == this) { close(m_fdPackFile); } } else if(m_data != NULL && m_bMalloced) { // Malloc'ed data free(m_data); } m_bMalloced = false; m_data = NULL; m_data_size = 0; m_data_offset = 0; m_fdPackFile = 0; m_fileName = ""; m_mmapData = NULL; m_fileOwnerDataBlock = NULL; m_bReadOnly = false; } // Encapsulate a pointer. Note - The pointer will not be free'ed bool KRDataBlock::load(void *data, size_t size) { unload(); m_data = data; m_data_size = size; m_data_offset = 0; m_bReadOnly = false; return true; } // Load a file into memory using mmap. The data pointer will be protected as read-only until append() or expand() is called bool KRDataBlock::load(const std::string &path) { bool success = false; unload(); struct stat statbuf; m_bReadOnly = true; m_fdPackFile = open(path.c_str(), O_RDONLY); if(m_fdPackFile >= 0) { m_fileOwnerDataBlock = this; m_fileName = KRResource::GetFileBase(path); if(fstat(m_fdPackFile, &statbuf) >= 0) { m_data_size = statbuf.st_size; m_data_offset = 0; success = true; } } if(!success) { // If anything failed, don't leave the object in an invalid state unload(); } return success; } // Create a KRDataBlock encapsulating a sub-region of this block. The caller is responsible to free the object. KRDataBlock *KRDataBlock::getSubBlock(int start, int length) { KRDataBlock *new_block = new KRDataBlock(); new_block->m_data_size = length; if(m_fdPackFile) { new_block->m_fdPackFile = m_fdPackFile; new_block->m_fileOwnerDataBlock = m_fileOwnerDataBlock; new_block->m_data_offset = start + m_data_offset; } else if(m_bMalloced) { new_block->m_data = (unsigned char *)m_data + start + m_data_offset; } new_block->m_bReadOnly = true; return new_block; } // Return a pointer to the start of the data block void *KRDataBlock::getStart() { assertLocked(); return m_data; } // Return a pointer to the byte after the end of the data block void *KRDataBlock::getEnd() { assertLocked(); return (unsigned char *)m_data + m_data_size; } // Return the size of the data block. Use append() or expand() to make the data block larger size_t KRDataBlock::getSize() const { return m_data_size; } // Expand the data block, and switch it to read-write mode. Note - this may result in a mmap'ed file being copied to malloc'ed ram and then closed void KRDataBlock::expand(size_t size) { if(m_data == NULL && m_fdPackFile == 0) { // Starting with an empty data block; allocate memory on the heap m_data = malloc(size); assert(m_data != NULL); m_data_size = size; m_data_offset = 0; m_bMalloced = true; } else if(m_bMalloced) { // Starting with a malloc'ed data block; realloc it expand m_data = realloc(m_data, m_data_size + size); m_data_size += size; } else { // Starting with a mmap'ed data block, an encapsulated pointer, or a sub-block; copy it to ram before expanding to avoid updating the original file until save() is called // ... Or starting with a pointer reference, we must make our own copy and must not free the pointer void *pNewData = malloc(m_data_size + size); assert(pNewData != NULL); // Copy exising data copy(pNewData); // Unload existing data allocation, which is now redundant size_t new_size = m_data_size + size; // We need to store this before unload() as unload() will reset it unload(); m_bMalloced = true; m_data = pNewData; m_data_size = new_size; m_data_offset = 0; } } // Append data to the end of the block, increasing the size of the block and making it read-write. void KRDataBlock::append(void *data, size_t size) { // Expand the data block expand(size); // Fill the new space with the data to append lock(); memcpy((unsigned char *)m_data + m_data_size - size, data, size); unlock(); } // Copy the entire data block to the destination pointer void KRDataBlock::copy(void *dest) { copy(dest, 0, m_data_size); } // Copy a range of data to the destination pointer void KRDataBlock::copy(void *dest, int start, int count) { if(m_lockCount == 0 && m_fdPackFile != 0) { // Optimization: If we haven't mmap'ed or malloced the data already, pread() it directly from the file into the buffer ssize_t r = pread(m_fdPackFile, dest, count, start + m_data_offset); assert(r != -1); } else { lock(); memcpy((unsigned char *)dest, (unsigned char *)m_data + start, count); unlock(); } } // Append data to the end of the block, increasing the size of the block and making it read-write. void KRDataBlock::append(KRDataBlock &data) { data.lock(); append(data.getStart(), data.getSize()); data.unlock(); } // Append string to the end of the block, increasing the size of the block and making it read-write. The null terminating character is included void KRDataBlock::append(const std::string &s) { const char *szText = s.c_str(); append((void *)szText, strlen(szText)+1); } // Save the data to a file. bool KRDataBlock::save(const std::string& path) { int fdNewFile = open(path.c_str(), O_RDWR | O_CREAT | O_TRUNC, (mode_t)0600); if(fdNewFile == -1) { return false; } else { // Seek to end of file and write a byte to enlarge it lseek(fdNewFile, m_data_size-1, SEEK_SET); write(fdNewFile, "", 1); // Now map it... void *pNewData = mmap(0, m_data_size, PROT_READ | PROT_WRITE, MAP_SHARED, fdNewFile, 0); if(pNewData == (caddr_t) -1) { close(fdNewFile); return false; } else if(m_data != NULL) { // Copy data to new file copy(pNewData); // Unmap the new file munmap(pNewData, m_data_size); // Close the new file close(fdNewFile); } return true; } } // Get contents as a string std::string KRDataBlock::getString() { KRDataBlock b; b.append(*this); b.append((void *)"\0", 1); // Ensure data is null terminated, to read as a string safely b.lock(); std::string ret = std::string((char *)b.getStart()); b.unlock(); return ret; } // Lock the memory, forcing it to be loaded into a contiguous block of address space void KRDataBlock::lock() { if(m_lockCount == 0) { // Memory mapped file; ensure data is mapped to ram if(m_fdPackFile) { if(m_data_size < KRENGINE_MIN_MMAP) { m_data = malloc(m_data_size); assert(m_data != NULL); copy(m_data); } else { //fprintf(stderr, "KRDataBlock::lock - \"%s\" (%i)\n", m_fileOwnerDataBlock->m_fileName.c_str(), m_lockCount); // Round m_data_offset down to the next memory page, as required by mmap size_t alignment_offset = m_data_offset & (KRAKEN_MEM_PAGE_SIZE - 1); if ((m_mmapData = mmap(0, m_data_size + alignment_offset, m_bReadOnly ? PROT_READ : PROT_WRITE, MAP_SHARED, m_fdPackFile, m_data_offset - alignment_offset)) == (caddr_t) -1) { int iError = errno; switch(iError) { case EACCES: fprintf(stderr, "mmap failed with EACCES\n"); break; case EBADF: fprintf(stderr, "mmap failed with EBADF\n"); break; case EMFILE: fprintf(stderr, "mmap failed with EMFILE\n"); break; case EINVAL: fprintf(stderr, "mmap failed with EINVAL\n"); break; case ENOMEM: fprintf(stderr, "mmap failed with ENOMEM\n"); break; case ENXIO: fprintf(stderr, "mmap failed with ENXIO\n"); break; case EOVERFLOW: fprintf(stderr, "mmap failed with EOVERFLOW\n"); break; default: fprintf(stderr, "mmap failed with errno: %i\n", iError); break; } assert(false); // mmap() failed. } m_mapCount++; m_mapSize += m_data_size; m_mapOverhead += alignment_offset + KRAKEN_MEM_ROUND_UP_PAGE(m_data_size + alignment_offset) - m_data_size + alignment_offset; // fprintf(stderr, "Mapped: %i Size: %d Overhead: %d\n", m_mapCount, m_mapSize, m_mapOverhead); m_data = (unsigned char *)m_mmapData + alignment_offset; } } } m_lockCount++; } // Unlock the memory, releasing the address space for use by other allocations void KRDataBlock::unlock() { // We expect that the data block was previously locked assertLocked(); if(m_lockCount == 1) { // Memory mapped file; ensure data is unmapped from ram if(m_fdPackFile) { if(m_data_size < KRENGINE_MIN_MMAP) { free(m_data); m_data = NULL; } else { //fprintf(stderr, "KRDataBlock::unlock - \"%s\" (%i)\n", m_fileOwnerDataBlock->m_fileName.c_str(), m_lockCount); munmap(m_mmapData, m_data_size); m_data = NULL; m_mmapData = NULL; m_mapCount--; m_mapSize -= m_data_size; size_t alignment_offset = m_data_offset & (KRAKEN_MEM_PAGE_SIZE - 1); m_mapOverhead -= alignment_offset + KRAKEN_MEM_ROUND_UP_PAGE(m_data_size + alignment_offset) - m_data_size + alignment_offset; // fprintf(stderr, "Mapped: %i Size: %d Overhead: %d\n", m_mapCount, m_mapSize, m_mapOverhead); } } } m_lockCount--; } // Assert if not locked void KRDataBlock::assertLocked() { assert(m_lockCount > 0); }