// // KRTriangle.cpp // Kraken // // Created by Kearwood Gilbert on 2/8/2014. // Copyright (c) 2014 Kearwood Software. All rights reserved. // #include "KRTriangle3.h" #include "KRVector3.h" KRTriangle3::KRTriangle3(const KRVector3 &v1, const KRVector3 &v2, const KRVector3 &v3) { m_c[0] = v1; m_c[1] = v2; m_c[2] = v3; } KRTriangle3::KRTriangle3(const KRTriangle3 &tri) { m_c[0] = tri[0]; m_c[1] = tri[1]; m_c[3] = tri[3]; } KRTriangle3::~KRTriangle3() { } bool KRTriangle3::operator ==(const KRTriangle3& b) const { return m_c[0] == b[0] && m_c[1] == b[1] && m_c[2] == b[2]; } bool KRTriangle3::operator !=(const KRTriangle3& b) const { return m_c[0] != b[0] || m_c[1] != b[1] || m_c[2] != b[2]; } KRTriangle3& KRTriangle3::operator =(const KRTriangle3& b) { m_c[0] = b[0]; m_c[1] = b[1]; m_c[3] = b[3]; return *this; } KRVector3& KRTriangle3::operator[](unsigned i) { return m_c[i]; } KRVector3 KRTriangle3::operator[](unsigned i) const { return m_c[i]; } bool KRTriangle3::rayCast(const KRVector3 &start, const KRVector3 &dir, KRVector3 &hit_point) const { // algorithm based on Dan Sunday's implementation at http://geomalgorithms.com/a06-_intersect-2.html const float SMALL_NUM = 0.00000001; // anything that avoids division overflow KRVector3 u, v, n; // triangle vectors KRVector3 w0, w; // ray vectors float r, a, b; // params to calc ray-plane intersect // get triangle edge vectors and plane normal u = m_c[1] - m_c[0]; v = m_c[2] - m_c[0]; n = KRVector3::Cross(u, v); // cross product if (n == KRVector3::Zero()) // triangle is degenerate return false; // do not deal with this case w0 = start - m_c[0]; a = -KRVector3::Dot(n, w0); b = KRVector3::Dot(n,dir); if (fabs(b) < SMALL_NUM) { // ray is parallel to triangle plane if (a == 0) return false; // ray lies in triangle plane else { return false; // ray disjoint from plane } } // get intersect point of ray with triangle plane r = a / b; if (r < 0.0) // ray goes away from triangle return false; // => no intersect // for a segment, also test if (r > 1.0) => no intersect KRVector3 plane_hit_point = start + dir * r; // intersect point of ray and plane // is plane_hit_point inside triangle? float uu, uv, vv, wu, wv, D; uu = KRVector3::Dot(u,u); uv = KRVector3::Dot(u,v); vv = KRVector3::Dot(v,v); w = plane_hit_point - m_c[0]; wu = KRVector3::Dot(w,u); wv = KRVector3::Dot(w,v); D = uv * uv - uu * vv; // get and test parametric coords float s, t; s = (uv * wv - vv * wu) / D; if (s < 0.0 || s > 1.0) // plane_hit_point is outside triangle return false; t = (uv * wu - uu * wv) / D; if (t < 0.0 || (s + t) > 1.0) // plane_hit_point is outside triangle return false; // plane_hit_point is inside the triangle hit_point = plane_hit_point; return true; } KRVector3 KRTriangle3::calculateNormal() const { KRVector3 v1 = m_c[1] - m_c[0]; KRVector3 v2 = m_c[2] - m_c[0]; return KRVector3::Normalize(KRVector3::Cross(v1, v2)); } bool _intersectSphere(const KRVector3 &start, const KRVector3 &dir, const KRVector3 &sphere_center, float sphere_radius, float &distance) { // dir must be normalized // From: http://archive.gamedev.net/archive/reference/articles/article1026.html // TODO - Move to another class? KRVector3 Q = sphere_center - start; float c = Q.magnitude(); float v = KRVector3::Dot(Q, dir); float d = sphere_radius * sphere_radius - (c * c - v * v); if(d < 0.0) { // No intersection return false; } // Return the distance to the [first] intersecting point distance = v - sqrt(d); if(distance < 0.0f) { return false; } return true; } bool _sameSide(const KRVector3 &p1, const KRVector3 &p2, const KRVector3 &a, const KRVector3 &b) { // TODO - Move to KRVector3 class? // From: http://stackoverflow.com/questions/995445/determine-if-a-3d-point-is-within-a-triangle KRVector3 cp1 = KRVector3::Cross(b - a, p1 - a); KRVector3 cp2 = KRVector3::Cross(b - a, p2 - a); if(KRVector3::Dot(cp1, cp2) >= 0) return true; return false; } KRVector3 _closestPointOnLine(const KRVector3 &a, const KRVector3 &b, const KRVector3 &p) { // From: http://stackoverflow.com/questions/995445/determine-if-a-3d-point-is-within-a-triangle // Determine t (the length of the vector from ‘a’ to ‘p’) KRVector3 c = p - a; KRVector3 V = KRVector3::Normalize(b - a); float d = (a - b).magnitude(); float t = KRVector3::Dot(V, c); // Check to see if ‘t’ is beyond the extents of the line segment if (t < 0) return a; if (t > d) return b; // Return the point between ‘a’ and ‘b’ return a + V * t; } KRVector3 KRTriangle3::closestPointOnTriangle(const KRVector3 &p) const { KRVector3 a = m_c[0]; KRVector3 b = m_c[1]; KRVector3 c = m_c[2]; KRVector3 Rab = _closestPointOnLine(a, b, p); KRVector3 Rbc = _closestPointOnLine(b, c, p); KRVector3 Rca = _closestPointOnLine(c, a, p); // return closest [Rab, Rbc, Rca] to p; float sd_Rab = (p - Rab).sqrMagnitude(); float sd_Rbc = (p - Rbc).sqrMagnitude(); float sd_Rca = (p - Rca).sqrMagnitude(); if(sd_Rab < sd_Rbc && sd_Rab < sd_Rca) { return Rab; } else if(sd_Rbc < sd_Rab && sd_Rbc < sd_Rca) { return Rbc; } else { return Rca; } } bool KRTriangle3::sphereCast(const KRVector3 &start, const KRVector3 &dir, float radius, KRVector3 &hit_point, float &hit_distance) const { // Dir must be normalized const float SMALL_NUM = 0.00000001f; // anything that avoids division overflow KRVector3 tri_normal = calculateNormal(); float d = KRVector3::Dot(tri_normal, m_c[0]); float e = KRVector3::Dot(tri_normal, start) - radius; float cotangent_distance = e - d; KRVector3 plane_intersect; float plane_intersect_distance; float denom = KRVector3::Dot(tri_normal, dir); if(denom > -SMALL_NUM) { return false; // dir is co-planar with the triangle or going in the direction of the normal; no intersection } // Detect an embedded plane, caused by a sphere that is already intersecting the plane. if(cotangent_distance <= 0 && cotangent_distance >= -radius * 2.0f) { // Embedded plane - Sphere is already intersecting the plane. // Use the point closest to the origin of the sphere as the intersection plane_intersect = start - tri_normal * (cotangent_distance + radius); plane_intersect_distance = 0.0f; } else { // Sphere is not intersecting the plane // Determine the first point hit by the swept sphere on the triangle's plane plane_intersect_distance = -(cotangent_distance / denom); plane_intersect = start + dir * plane_intersect_distance; } if(plane_intersect_distance < 0.0f) { return false; } if(containsPoint(plane_intersect)) { // Triangle contains point hit_point = plane_intersect; hit_distance = plane_intersect_distance; return true; } else { // Triangle does not contain point, cast ray back to sphere from closest point on triangle edge or vertice KRVector3 closest_point = closestPointOnTriangle(plane_intersect); float reverse_hit_distance; if(_intersectSphere(closest_point, -dir, start, radius, reverse_hit_distance)) { // Reverse cast hit sphere hit_distance = reverse_hit_distance; hit_point = closest_point; return true; } else { // Reverse cast did not hit sphere return false; } } } bool KRTriangle3::containsPoint(const KRVector3 &p) const { /* // From: http://stackoverflow.com/questions/995445/determine-if-a-3d-point-is-within-a-triangle const float SMALL_NUM = 0.00000001f; // anything that avoids division overflow // KRVector3 A = m_c[0], B = m_c[1], C = m_c[2]; if (_sameSide(p, m_c[0], m_c[1], m_c[2]) && _sameSide(p, m_c[1], m_c[0], m_c[2]) && _sameSide(p, m_c[2], m_c[0], m_c[1])) { KRVector3 vc1 = KRVector3::Cross(m_c[0] - m_c[1], m_c[0] - m_c[2]); if(fabs(KRVector3::Dot(m_c[0] - p, vc1)) <= SMALL_NUM) { return true; } } return false; */ // From: http://blogs.msdn.com/b/rezanour/archive/2011/08/07/barycentric-coordinates-and-point-in-triangle-tests.aspx KRVector3 A = m_c[0]; KRVector3 B = m_c[1]; KRVector3 C = m_c[2]; KRVector3 P = p; // Prepare our barycentric variables KRVector3 u = B - A; KRVector3 v = C - A; KRVector3 w = P - A; KRVector3 vCrossW = KRVector3::Cross(v, w); KRVector3 vCrossU = KRVector3::Cross(v, u); // Test sign of r if (KRVector3::Dot(vCrossW, vCrossU) < 0) return false; KRVector3 uCrossW = KRVector3::Cross(u, w); KRVector3 uCrossV = KRVector3::Cross(u, v); // Test sign of t if (KRVector3::Dot(uCrossW, uCrossV) < 0) return false; // At this point, we know that r and t and both > 0. // Therefore, as long as their sum is <= 1, each must be less <= 1 float denom = uCrossV.magnitude(); float r = vCrossW.magnitude() / denom; float t = uCrossW.magnitude() / denom; return (r + t <= 1); }