Files
kraken/kraken/KRPipeline.cpp
kearwood 6b8404c3d7 Removed rim_color and rim_power arguments from KRPipeline::bind.
Updated the call site in KRMaterial to set rim_color and rim_power explicitly.
2022-07-08 00:01:40 -07:00

732 lines
33 KiB
C++

//
// KRPipeline.cpp
// Kraken Engine
//
// Copyright 2022 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KRPipeline.h"
#include "assert.h"
#include "KRLight.h"
#include "KRDirectionalLight.h"
#include "KRSpotLight.h"
#include "KRPointLight.h"
#include "KRContext.h"
#include "KRRenderPass.h"
const char *KRPipeline::KRENGINE_UNIFORM_NAMES[] = {
"material_ambient", // KRENGINE_UNIFORM_MATERIAL_AMBIENT
"material_diffuse", // KRENGINE_UNIFORM_MATERIAL_DIFFUSE
"material_specular", // KRENGINE_UNIFORM_MATERIAL_SPECULAR
"material_reflection", // KRENGINE_UNIFORM_MATERIAL_REFLECTION
"material_alpha", // KRENGINE_UNIFORM_MATERIAL_ALPHA
"material_shininess", // KRENGINE_UNIFORM_MATERIAL_SHININESS
"light_position", // KRENGINE_UNIFORM_LIGHT_POSITION
"light_direction_model_space", // KRENGINE_UNIFORM_LIGHT_DIRECTION_MODEL_SPACE
"light_direction_view_space", // KRENGINE_UNIFORM_LIGHT_DIRECTION_VIEW_SPACE
"light_color", // KRENGINE_UNIFORM_LIGHT_COLOR
"light_decay_start", // KRENGINE_UNIFORM_LIGHT_DECAY_START
"light_cutoff", // KRENGINE_UNIFORM_LIGHT_CUTOFF
"light_intensity", // KRENGINE_UNIFORM_LIGHT_INTENSITY
"flare_size", // KRENGINE_UNIFORM_FLARE_SIZE
"view_space_model_origin", // KRENGINE_UNIFORM_VIEW_SPACE_MODEL_ORIGIN
"mvp_matrix", // KRENGINE_UNIFORM_MVP
"inv_projection_matrix", // KRENGINE_UNIFORM_INVP
"inv_mvp_matrix", // KRENGINE_UNIFORM_INVMVP
"inv_mvp_matrix_no_translate", // KRENGINE_UNIFORM_INVMVP_NO_TRANSLATE
"model_view_inverse_transpose_matrix", // KRENGINE_UNIFORM_MODEL_VIEW_INVERSE_TRANSPOSE
"model_inverse_transpose_matrix", // KRENGINE_UNIFORM_MODEL_INVERSE_TRANSPOSE
"model_view_matrix", // KRENGINE_UNIFORM_MODEL_VIEW
"model_matrix", // KRENGINE_UNIFORM_MODEL_MATRIX
"projection_matrix", // KRENGINE_UNIFORM_PROJECTION_MATRIX
"camera_position_model_space", // KRENGINE_UNIFORM_CAMERAPOS_MODEL_SPACE
"viewport", // KRENGINE_UNIFORM_VIEWPORT
"viewport_downsample", // KRENGINE_UNIFORM_VIEWPORT_DOWNSAMPLE
"diffuseTexture", // KRENGINE_UNIFORM_DIFFUSETEXTURE
"specularTexture", // KRENGINE_UNIFORM_SPECULARTEXTURE
"reflectionCubeTexture", // KRENGINE_UNIFORM_REFLECTIONCUBETEXTURE
"reflectionTexture", // KRENGINE_UNIFORM_REFLECTIONTEXTURE
"normalTexture", // KRENGINE_UNIFORM_NORMALTEXTURE
"diffuseTexture_Scale", // KRENGINE_UNIFORM_DIFFUSETEXTURE_SCALE
"specularTexture_Scale", // KRENGINE_UNIFORM_SPECULARTEXTURE_SCALE
"reflectionTexture_Scale", // KRENGINE_UNIFORM_REFLECTIONTEXTURE_SCALE
"normalTexture_Scale", // KRENGINE_UNIFORM_NORMALTEXTURE_SCALE
"normalTexture_Scale", // KRENGINE_UNIFORM_AMBIENTTEXTURE_SCALE
"diffuseTexture_Offset", // KRENGINE_UNIFORM_DIFFUSETEXTURE_OFFSET
"specularTexture_Offset", // KRENGINE_UNIFORM_SPECULARTEXTURE_OFFSET
"reflectionTexture_Offset", // KRENGINE_UNIFORM_REFLECTIONTEXTURE_OFFSET
"normalTexture_Offset", // KRENGINE_UNIFORM_NORMALTEXTURE_OFFSET
"ambientTexture_Offset", // KRENGINE_UNIFORM_AMBIENTTEXTURE_OFFSET
"shadow_mvp1", // KRENGINE_UNIFORM_SHADOWMVP1
"shadow_mvp2", // KRENGINE_UNIFORM_SHADOWMVP2
"shadow_mvp3", // KRENGINE_UNIFORM_SHADOWMVP3
"shadowTexture1", // KRENGINE_UNIFORM_SHADOWTEXTURE1
"shadowTexture2", // KRENGINE_UNIFORM_SHADOWTEXTURE2
"shadowTexture3", // KRENGINE_UNIFORM_SHADOWTEXTURE3
"lightmapTexture", // KRENGINE_UNIFORM_LIGHTMAPTEXTURE
"gbuffer_frame", // KRENGINE_UNIFORM_GBUFFER_FRAME
"gbuffer_depth", // KRENGINE_UNIFORM_GBUFFER_DEPTH
"depthFrame", // KRENGINE_UNIFORM_DEPTH_FRAME
"volumetricEnvironmentFrame", // KRENGINE_UNIFORM_VOLUMETRIC_ENVIRONMENT_FRAME
"renderFrame", // KRENGINE_UNIFORM_RENDER_FRAME
"time_absolute", // KRENGINE_UNIFORM_ABSOLUTE_TIME
"fog_near", // KRENGINE_UNIFORM_FOG_NEAR
"fog_far", // KRENGINE_UNIFORM_FOG_FAR
"fog_density", // KRENGINE_UNIFORM_FOG_DENSITY
"fog_color", // KRENGINE_UNIFORM_FOG_COLOR
"fog_scale", // KRENGINE_UNIFORM_FOG_SCALE
"fog_density_premultiplied_exponential", // KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_EXPONENTIAL
"fog_density_premultiplied_squared", // KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_SQUARED
"slice_depth_scale", // KRENGINE_UNIFORM_SLICE_DEPTH_SCALE
"particle_origin", // KRENGINE_UNIFORM_PARTICLE_ORIGIN
"bone_transforms", // KRENGINE_UNIFORM_BONE_TRANSFORMS
"rim_color", // KRENGINE_UNIFORM_RIM_COLOR
"rim_power", // KRENGINE_UNIFORM_RIM_POWER
"fade_color", // KRENGINE_UNIFORM_FADE_COLOR
};
KRPipeline::KRPipeline(KRContext& context, KRSurface& surface, const PipelineInfo& info, const char* szKey, const std::vector<KRShader*>& shaders, uint32_t vertexAttributes, ModelFormat modelFormat)
: KRContextObject(context)
, m_pushConstantBuffer(nullptr)
, m_pushConstantBufferSize(0)
{
memset(m_pushConstantSize, 0, KRENGINE_NUM_UNIFORMS);
memset(m_pushConstantOffset, 0, KRENGINE_NUM_UNIFORMS * sizeof(int));
m_pipelineLayout = nullptr;
m_graphicsPipeline = nullptr;
m_pushConstantsLayout = nullptr;
std::unique_ptr<KRDevice>& device = surface.getDevice();
// TODO - Handle device removal
strcpy(m_szKey, szKey);
const int kMaxStages = 4;
VkPipelineShaderStageCreateInfo stages[kMaxStages];
memset(static_cast<void*>(stages), 0, sizeof(VkPipelineShaderStageCreateInfo) * kMaxStages);
size_t stage_count = 0;
// TODO - Refactor this... These lookup tables should be in KRMesh...
static const KRMesh::vertex_attrib_t attribute_mapping[KRMesh::KRENGINE_NUM_ATTRIBUTES] = {
KRMesh::KRENGINE_ATTRIB_VERTEX,
KRMesh::KRENGINE_ATTRIB_NORMAL,
KRMesh::KRENGINE_ATTRIB_TANGENT,
KRMesh::KRENGINE_ATTRIB_TEXUVA,
KRMesh::KRENGINE_ATTRIB_TEXUVB,
KRMesh::KRENGINE_ATTRIB_BONEINDEXES,
KRMesh::KRENGINE_ATTRIB_BONEWEIGHTS,
KRMesh::KRENGINE_ATTRIB_VERTEX,
KRMesh::KRENGINE_ATTRIB_NORMAL,
KRMesh::KRENGINE_ATTRIB_TANGENT,
KRMesh::KRENGINE_ATTRIB_TEXUVA,
KRMesh::KRENGINE_ATTRIB_TEXUVB,
};
uint32_t attribute_locations[KRMesh::KRENGINE_NUM_ATTRIBUTES] = {};
for (KRShader* shader : shaders) {
VkShaderModule shaderModule;
if (!shader->createShaderModule(device->m_logicalDevice, shaderModule)) {
// failed! TODO - Error handling
}
const SpvReflectShaderModule* reflection = shader->getReflection();
VkPipelineShaderStageCreateInfo& stageInfo = stages[stage_count++];
stageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
if (shader->getSubExtension().compare("vert") == 0) {
stageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
for (uint32_t i = 0; i < reflection->input_variable_count; i++) {
// TODO - We should have an interface to allow classes such as KRMesh to expose bindings
SpvReflectInterfaceVariable& input_var = *reflection->input_variables[i];
if (strcmp(input_var.name, "vertex_position") == 0) {
attribute_locations[KRMesh::KRENGINE_ATTRIB_VERTEX] = input_var.location + 1;
}
else if (strcmp(input_var.name, "vertex_normal") == 0) {
attribute_locations[KRMesh::KRENGINE_ATTRIB_NORMAL] = input_var.location + 1;
}
else if (strcmp(input_var.name, "vertex_tangent") == 0) {
attribute_locations[KRMesh::KRENGINE_ATTRIB_TANGENT] = input_var.location + 1;
}
else if (strcmp(input_var.name, "vertex_uv") == 0) {
attribute_locations[KRMesh::KRENGINE_ATTRIB_TEXUVA] = input_var.location + 1;
}
else if (strcmp(input_var.name, "vertex_lightmap_uv") == 0) {
attribute_locations[KRMesh::KRENGINE_ATTRIB_TEXUVB] = input_var.location + 1;
}
else if (strcmp(input_var.name, "bone_indexes") == 0) {
attribute_locations[KRMesh::KRENGINE_ATTRIB_BONEINDEXES] = input_var.location + 1;
}
else if (strcmp(input_var.name, "bone_weights") == 0) {
attribute_locations[KRMesh::KRENGINE_ATTRIB_BONEWEIGHTS] = input_var.location + 1;
}
}
for(int i=0; i<reflection->push_constant_block_count; i++) {
const SpvReflectBlockVariable& block = reflection->push_constant_blocks[i];
if (stricmp(block.name, "constants") == 0) {
if (block.size > 0) {
m_pushConstantBuffer = (__uint8_t*)malloc(block.size);
memset(m_pushConstantBuffer, 0, block.size);
m_pushConstantBufferSize = block.size;
// Get push constant offsets
for (int iUniform = 0; iUniform < KRENGINE_NUM_UNIFORMS; iUniform++) {
for (int iMember = 0; iMember < block.member_count; iMember++) {
const SpvReflectBlockVariable& member = block.members[iMember];
if (stricmp(KRENGINE_UNIFORM_NAMES[iUniform], member.name) == 0)
{
m_pushConstantOffset[iUniform] = member.offset;
m_pushConstantSize[iUniform] = member.size;
}
}
}
}
}
}
}
else if (shader->getSubExtension().compare("frag") == 0) {
stageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
}
else {
// failed! TODO - Error handling
}
stageInfo.module = shaderModule;
stageInfo.pName = "main";
}
VkVertexInputBindingDescription bindingDescription{};
bindingDescription.binding = 0;
bindingDescription.stride = KRMesh::VertexSizeForAttributes(vertexAttributes);
bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
uint32_t vertexAttributeCount = 0;
VkVertexInputAttributeDescription vertexAttributeDescriptions[KRMesh::KRENGINE_NUM_ATTRIBUTES]{};
for (int i = KRMesh::KRENGINE_ATTRIB_VERTEX; i < KRMesh::KRENGINE_NUM_ATTRIBUTES; i++) {
KRMesh::vertex_attrib_t mesh_attrib = static_cast<KRMesh::vertex_attrib_t>(i);
int location_attrib = attribute_mapping[i];
if (KRMesh::has_vertex_attribute(vertexAttributes, (KRMesh::vertex_attrib_t)i) && attribute_locations[location_attrib]) {
VkVertexInputAttributeDescription& desc = vertexAttributeDescriptions[vertexAttributeCount++];
desc.binding = 0;
desc.location = attribute_locations[location_attrib] - 1;
desc.format = KRMesh::AttributeVulkanFormat(mesh_attrib);
desc.offset = KRMesh::AttributeOffset(mesh_attrib, vertexAttributes);
}
}
VkPipelineVertexInputStateCreateInfo vertexInputInfo{};
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo.vertexBindingDescriptionCount = 1;
vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
vertexInputInfo.vertexAttributeDescriptionCount = vertexAttributeCount;
vertexInputInfo.pVertexAttributeDescriptions = vertexAttributeDescriptions;
VkPipelineInputAssemblyStateCreateInfo inputAssembly{};
inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
switch (modelFormat) {
case ModelFormat::KRENGINE_MODEL_FORMAT_INDEXED_TRIANGLES:
case ModelFormat::KRENGINE_MODEL_FORMAT_TRIANGLES:
inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
break;
case ModelFormat::KRENGINE_MODEL_FORMAT_INDEXED_STRIP:
case ModelFormat::KRENGINE_MODEL_FORMAT_STRIP:
inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
break;
}
inputAssembly.primitiveRestartEnable = VK_FALSE;
VkViewport viewport{};
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = static_cast<float>(surface.getWidth());
viewport.height = static_cast<float>(surface.getHeight());
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
VkRect2D scissor{};
scissor.offset = { 0, 0 };
scissor.extent.width = surface.getWidth();
scissor.extent.height = surface.getHeight();
VkPipelineViewportStateCreateInfo viewportState{};
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportState.viewportCount = 1;
viewportState.pViewports = &viewport;
viewportState.scissorCount = 1;
viewportState.pScissors = &scissor;
VkPipelineRasterizationStateCreateInfo rasterizer{};
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterizer.depthClampEnable = VK_FALSE;
rasterizer.rasterizerDiscardEnable = VK_FALSE;
rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
rasterizer.lineWidth = 1.0f;
switch (info.cullMode) {
case CullMode::kCullBack:
rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
break;
case CullMode::kCullFront:
rasterizer.cullMode = VK_CULL_MODE_FRONT_BIT;
break;
case CullMode::kCullNone:
rasterizer.cullMode = VK_CULL_MODE_NONE;
break;
}
rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE;
rasterizer.depthBiasEnable = VK_FALSE;
rasterizer.depthBiasConstantFactor = 0.0f;
rasterizer.depthBiasClamp = 0.0f;
rasterizer.depthBiasSlopeFactor = 0.0f;
VkPipelineMultisampleStateCreateInfo multisampling{};
multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampling.sampleShadingEnable = VK_FALSE;
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
multisampling.minSampleShading = 1.0f;
multisampling.pSampleMask = nullptr;
multisampling.alphaToCoverageEnable = VK_FALSE;
multisampling.alphaToOneEnable = VK_FALSE;
VkPipelineColorBlendAttachmentState colorBlendAttachment{};
colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
switch (info.rasterMode) {
case RasterMode::kOpaque:
case RasterMode::kOpaqueLessTest:
case RasterMode::kOpaqueNoTest:
case RasterMode::kOpaqueNoDepthWrite:
colorBlendAttachment.blendEnable = VK_FALSE;
colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO;
colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD;
break;
case RasterMode::kAlphaBlend:
case RasterMode::kAlphaBlendNoTest:
colorBlendAttachment.blendEnable = VK_TRUE;
colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD;
break;
case RasterMode::kAdditive:
case RasterMode::kAdditiveNoTest:
colorBlendAttachment.blendEnable = VK_TRUE;
colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE;
colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD;
break;
}
colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD;
VkPipelineColorBlendStateCreateInfo colorBlending{};
colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlending.logicOpEnable = VK_FALSE;
colorBlending.logicOp = VK_LOGIC_OP_COPY;
colorBlending.attachmentCount = 1;
colorBlending.pAttachments = &colorBlendAttachment;
colorBlending.blendConstants[0] = 0.0f;
colorBlending.blendConstants[1] = 0.0f;
colorBlending.blendConstants[2] = 0.0f;
colorBlending.blendConstants[3] = 0.0f;
VkPipelineLayoutCreateInfo pipelineLayoutInfo{};
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutInfo.setLayoutCount = 0;
pipelineLayoutInfo.pSetLayouts = nullptr;
pipelineLayoutInfo.pushConstantRangeCount = 0;
pipelineLayoutInfo.pPushConstantRanges = nullptr;
if (vkCreatePipelineLayout(device->m_logicalDevice, &pipelineLayoutInfo, nullptr, &m_pipelineLayout) != VK_SUCCESS) {
// failed! TODO - Error handling
}
if (m_pushConstantBuffer) {
VkPipelineLayoutCreateInfo pushConstantsLayoutInfo{};
pushConstantsLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pushConstantsLayoutInfo.setLayoutCount = 0;
pushConstantsLayoutInfo.pSetLayouts = nullptr;
pushConstantsLayoutInfo.pushConstantRangeCount = 0;
pushConstantsLayoutInfo.pPushConstantRanges = nullptr;
// TODO - We need to support push constants for other shader stages
VkPushConstantRange push_constant{};
push_constant.offset = 0;
push_constant.size = m_pushConstantBufferSize;
push_constant.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
pushConstantsLayoutInfo.pPushConstantRanges = &push_constant;
pushConstantsLayoutInfo.pushConstantRangeCount = 1;
if (vkCreatePipelineLayout(device->m_logicalDevice, &pushConstantsLayoutInfo, nullptr, &m_pushConstantsLayout) != VK_SUCCESS) {
// failed! TODO - Error handling
}
}
VkPipelineDepthStencilStateCreateInfo depthStencil{};
depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
switch (info.rasterMode) {
case RasterMode::kOpaque:
case RasterMode::kOpaqueLessTest:
depthStencil.depthTestEnable = VK_TRUE;
depthStencil.depthWriteEnable = VK_TRUE;
break;
case RasterMode::kOpaqueNoTest:
depthStencil.depthTestEnable = VK_FALSE;
depthStencil.depthWriteEnable = VK_TRUE;
break;
case RasterMode::kOpaqueNoDepthWrite:
case RasterMode::kAlphaBlend:
case RasterMode::kAdditive:
depthStencil.depthTestEnable = VK_TRUE;
depthStencil.depthWriteEnable = VK_FALSE;
break;
case RasterMode::kAlphaBlendNoTest:
case RasterMode::kAdditiveNoTest:
depthStencil.depthTestEnable = VK_FALSE;
depthStencil.depthWriteEnable = VK_FALSE;
break;
}
if (info.rasterMode == RasterMode::kOpaqueLessTest) {
depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;
} else {
depthStencil.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
}
depthStencil.depthBoundsTestEnable = VK_FALSE;
depthStencil.minDepthBounds = 0.0f;
depthStencil.maxDepthBounds = 1.0f;
depthStencil.stencilTestEnable = VK_FALSE;
depthStencil.front = {};
depthStencil.back = {};
KRRenderPass& renderPass = surface.getForwardOpaquePass(); // TODO - This needs to be selected dynamically from info.render_pass
VkGraphicsPipelineCreateInfo pipelineInfo{};
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineInfo.stageCount = stage_count;
pipelineInfo.pStages = stages;
pipelineInfo.pVertexInputState = &vertexInputInfo;
pipelineInfo.pInputAssemblyState = &inputAssembly;
pipelineInfo.pViewportState = &viewportState;
pipelineInfo.pRasterizationState = &rasterizer;
pipelineInfo.pMultisampleState = &multisampling;
pipelineInfo.pDepthStencilState = &depthStencil;
pipelineInfo.pColorBlendState = &colorBlending;
pipelineInfo.pDynamicState = nullptr;
pipelineInfo.layout = m_pipelineLayout;
pipelineInfo.renderPass = renderPass.m_renderPass;
pipelineInfo.subpass = 0;
pipelineInfo.basePipelineHandle = VK_NULL_HANDLE;
pipelineInfo.basePipelineIndex = -1;
if (vkCreateGraphicsPipelines(device->m_logicalDevice, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &m_graphicsPipeline) != VK_SUCCESS) {
// Failed! TODO - Error handling
}
}
KRPipeline::~KRPipeline() {
if (m_graphicsPipeline) {
// TODO: vkDestroyPipeline(device, m_graphicsPipeline, nullptr);
}
if (m_pipelineLayout) {
// TODO: vkDestroyPipelineLayout(device, m_pipelineLayout, nullptr);
}
if (m_pushConstantsLayout) {
// TODO: vkDestroyPipelineLayout(device, m_pushConstantsLayout, nullptr);
}
if(getContext().getPipelineManager()->m_active_pipeline == this) {
getContext().getPipelineManager()->m_active_pipeline = NULL;
}
if (m_pushConstantBuffer) {
delete m_pushConstantBuffer;
m_pushConstantBuffer = nullptr;
}
}
void KRPipeline::setUniform(int location, float value)
{
if (m_pushConstantSize[location] == sizeof(value)) {
float* constant = (float*)(m_pushConstantBuffer + m_pushConstantOffset[location]);
*constant = value;
}
}
void KRPipeline::setUniform(int location, int value)
{
if (m_pushConstantSize[location] == sizeof(value)) {
int* constant = (int*)(m_pushConstantBuffer + m_pushConstantOffset[location]);
*constant = value;
}
}
void KRPipeline::setUniform(int location, const Vector2 &value)
{
if (m_pushConstantSize[location] == sizeof(value)) {
Vector2* constant = (Vector2*)(m_pushConstantBuffer + m_pushConstantOffset[location]);
*constant = value;
}
}
void KRPipeline::setUniform(int location, const Vector3 &value)
{
if (m_pushConstantSize[location] == sizeof(value)) {
Vector3* constant = (Vector3*)(m_pushConstantBuffer + m_pushConstantOffset[location]);
*constant = value;
}
}
void KRPipeline::setUniform(int location, const Vector4 &value)
{
if (m_pushConstantSize[location] == sizeof(value)) {
Vector4* constant = (Vector4*)(m_pushConstantBuffer + m_pushConstantOffset[location]);
*constant = value;
}
}
void KRPipeline::setUniform(int location, const Matrix4 &value)
{
if (m_pushConstantSize[location] == sizeof(value)) {
Matrix4* constant = (Matrix4*)(m_pushConstantBuffer + m_pushConstantOffset[location]);
*constant = value;
}
}
bool KRPipeline::bind(VkCommandBuffer& commandBuffer, KRCamera &camera, const KRViewport &viewport, const Matrix4 &matModel, const std::vector<KRPointLight *> *point_lights, const std::vector<KRDirectionalLight *> *directional_lights, const std::vector<KRSpotLight *> *spot_lights, const KRNode::RenderPass &renderPass)
{
setUniform(KRENGINE_UNIFORM_ABSOLUTE_TIME, getContext().getAbsoluteTime());
int light_directional_count = 0;
//int light_point_count = 0;
//int light_spot_count = 0;
// TODO - Need to support multiple lights and more light types in forward rendering
if(renderPass != KRNode::RENDER_PASS_DEFERRED_LIGHTS && renderPass != KRNode::RENDER_PASS_DEFERRED_GBUFFER && renderPass != KRNode::RENDER_PASS_DEFERRED_OPAQUE && renderPass != KRNode::RENDER_PASS_GENERATE_SHADOWMAPS) {
if (directional_lights) {
for (std::vector<KRDirectionalLight*>::const_iterator light_itr = directional_lights->begin(); light_itr != directional_lights->end(); light_itr++) {
KRDirectionalLight* directional_light = (*light_itr);
if (light_directional_count == 0) {
int cShadowBuffers = directional_light->getShadowBufferCount();
if (m_pushConstantSize[KRENGINE_UNIFORM_SHADOWTEXTURE1] && cShadowBuffers > 0) {
if (m_pContext->getTextureManager()->selectTexture(GL_TEXTURE_2D, 3, directional_light->getShadowTextures()[0])) {
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
}
m_pContext->getTextureManager()->_setWrapModeS(3, GL_CLAMP_TO_EDGE);
m_pContext->getTextureManager()->_setWrapModeT(3, GL_CLAMP_TO_EDGE);
}
if (m_pushConstantSize[KRENGINE_UNIFORM_SHADOWTEXTURE2] && cShadowBuffers > 1 && camera.settings.m_cShadowBuffers > 1) {
if (m_pContext->getTextureManager()->selectTexture(GL_TEXTURE_2D, 4, directional_light->getShadowTextures()[1])) {
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
}
m_pContext->getTextureManager()->_setWrapModeS(4, GL_CLAMP_TO_EDGE);
m_pContext->getTextureManager()->_setWrapModeT(4, GL_CLAMP_TO_EDGE);
}
if (m_pushConstantSize[KRENGINE_UNIFORM_SHADOWTEXTURE3] && cShadowBuffers > 2 && camera.settings.m_cShadowBuffers > 2) {
if (m_pContext->getTextureManager()->selectTexture(GL_TEXTURE_2D, 5, directional_light->getShadowTextures()[2])) {
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
}
m_pContext->getTextureManager()->_setWrapModeS(5, GL_CLAMP_TO_EDGE);
m_pContext->getTextureManager()->_setWrapModeT(5, GL_CLAMP_TO_EDGE);
}
Matrix4 matBias;
matBias.translate(1.0, 1.0, 1.0);
matBias.scale(0.5);
for (int iShadow = 0; iShadow < cShadowBuffers; iShadow++) {
setUniform(KRENGINE_UNIFORM_SHADOWMVP1 + iShadow, matModel * directional_light->getShadowViewports()[iShadow].getViewProjectionMatrix() * matBias);
}
if (m_pushConstantSize[KRENGINE_UNIFORM_LIGHT_DIRECTION_MODEL_SPACE]) {
Matrix4 inverseModelMatrix = matModel;
inverseModelMatrix.invert();
// Bind the light direction vector
Vector3 lightDirObject = Matrix4::Dot(inverseModelMatrix, directional_light->getWorldLightDirection());
lightDirObject.normalize();
setUniform(KRENGINE_UNIFORM_LIGHT_DIRECTION_MODEL_SPACE, lightDirObject);
}
}
light_directional_count++;
}
}
//light_point_count = point_lights.size();
//light_spot_count = spot_lights.size();
}
if(m_pushConstantSize[KRENGINE_UNIFORM_CAMERAPOS_MODEL_SPACE]) {
Matrix4 inverseModelMatrix = matModel;
inverseModelMatrix.invert();
if(m_pushConstantSize[KRENGINE_UNIFORM_CAMERAPOS_MODEL_SPACE]) {
// Transform location of camera to object space for calculation of specular halfVec
Vector3 cameraPosObject = Matrix4::Dot(inverseModelMatrix, viewport.getCameraPosition());
setUniform(KRENGINE_UNIFORM_CAMERAPOS_MODEL_SPACE, cameraPosObject);
}
}
if(m_pushConstantSize[KRENGINE_UNIFORM_MVP] || m_pushConstantSize[KRPipeline::KRENGINE_UNIFORM_INVMVP]) {
// Bind our modelmatrix variable to be a uniform called mvpmatrix in our shaderprogram
Matrix4 mvpMatrix = matModel * viewport.getViewProjectionMatrix();
setUniform(KRENGINE_UNIFORM_MVP, mvpMatrix);
if(m_pushConstantSize[KRPipeline::KRENGINE_UNIFORM_INVMVP]) {
setUniform(KRPipeline::KRENGINE_UNIFORM_INVMVP, Matrix4::Invert(mvpMatrix));
}
}
if(m_pushConstantSize[KRPipeline::KRENGINE_UNIFORM_VIEW_SPACE_MODEL_ORIGIN] || m_pushConstantSize[KRENGINE_UNIFORM_MODEL_VIEW_INVERSE_TRANSPOSE] || m_pushConstantSize[KRPipeline::KRENGINE_UNIFORM_MODEL_VIEW]) {
Matrix4 matModelView = matModel * viewport.getViewMatrix();
setUniform(KRENGINE_UNIFORM_MODEL_VIEW, matModelView);
if(m_pushConstantSize[KRPipeline::KRENGINE_UNIFORM_VIEW_SPACE_MODEL_ORIGIN]) {
Vector3 view_space_model_origin = Matrix4::Dot(matModelView, Vector3::Zero()); // Origin point of model space is the light source position. No perspective, so no w divide required
setUniform(KRENGINE_UNIFORM_VIEW_SPACE_MODEL_ORIGIN, view_space_model_origin);
}
if(m_pushConstantSize[KRENGINE_UNIFORM_MODEL_VIEW_INVERSE_TRANSPOSE]) {
Matrix4 matModelViewInverseTranspose = matModelView;
matModelViewInverseTranspose.transpose();
matModelViewInverseTranspose.invert();
setUniform(KRENGINE_UNIFORM_MODEL_VIEW_INVERSE_TRANSPOSE, matModelViewInverseTranspose);
}
}
if(m_pushConstantSize[KRENGINE_UNIFORM_MODEL_INVERSE_TRANSPOSE]) {
Matrix4 matModelInverseTranspose = matModel;
matModelInverseTranspose.transpose();
matModelInverseTranspose.invert();
setUniform(KRENGINE_UNIFORM_MODEL_INVERSE_TRANSPOSE, matModelInverseTranspose);
}
if(m_pushConstantSize[KRPipeline::KRENGINE_UNIFORM_INVP]) {
setUniform(KRENGINE_UNIFORM_INVP, viewport.getInverseProjectionMatrix());
}
if(m_pushConstantSize[KRPipeline::KRENGINE_UNIFORM_INVMVP_NO_TRANSLATE]) {
Matrix4 matInvMVPNoTranslate = matModel * viewport.getViewMatrix();;
// Remove the translation
matInvMVPNoTranslate.getPointer()[3] = 0;
matInvMVPNoTranslate.getPointer()[7] = 0;
matInvMVPNoTranslate.getPointer()[11] = 0;
matInvMVPNoTranslate.getPointer()[12] = 0;
matInvMVPNoTranslate.getPointer()[13] = 0;
matInvMVPNoTranslate.getPointer()[14] = 0;
matInvMVPNoTranslate.getPointer()[15] = 1.0;
matInvMVPNoTranslate = matInvMVPNoTranslate * viewport.getProjectionMatrix();
matInvMVPNoTranslate.invert();
setUniform(KRENGINE_UNIFORM_INVMVP_NO_TRANSLATE, matInvMVPNoTranslate);
}
setUniform(KRENGINE_UNIFORM_MODEL_MATRIX, matModel);
if(m_pushConstantSize[KRENGINE_UNIFORM_PROJECTION_MATRIX]) {
setUniform(KRENGINE_UNIFORM_PROJECTION_MATRIX, viewport.getProjectionMatrix());
}
if(m_pushConstantSize[KRENGINE_UNIFORM_VIEWPORT]) {
setUniform(KRENGINE_UNIFORM_VIEWPORT, Vector4::Create(
(float)0.0,
(float)0.0,
(float)viewport.getSize().x,
(float)viewport.getSize().y
)
);
}
if(m_pushConstantSize[KRENGINE_UNIFORM_VIEWPORT_DOWNSAMPLE]) {
setUniform(KRENGINE_UNIFORM_VIEWPORT_DOWNSAMPLE, camera.getDownsample());
}
// Fog parameters
setUniform(KRENGINE_UNIFORM_FOG_NEAR, camera.settings.fog_near);
setUniform(KRENGINE_UNIFORM_FOG_FAR, camera.settings.fog_far);
setUniform(KRENGINE_UNIFORM_FOG_DENSITY, camera.settings.fog_density);
setUniform(KRENGINE_UNIFORM_FOG_COLOR, camera.settings.fog_color);
if(m_pushConstantSize[KRENGINE_UNIFORM_FOG_SCALE]) {
setUniform(KRENGINE_UNIFORM_FOG_SCALE, 1.0f / (camera.settings.fog_far - camera.settings.fog_near));
}
if(m_pushConstantSize[KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_EXPONENTIAL]) {
setUniform(KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_EXPONENTIAL, -camera.settings.fog_density * 1.442695f); // -fog_density / log(2)
}
if(m_pushConstantSize[KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_SQUARED]) {
setUniform(KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_SQUARED, (float)(-camera.settings.fog_density * camera.settings.fog_density * 1.442695)); // -fog_density * fog_density / log(2)
}
// Sets the diffuseTexture variable to the first texture unit
setUniform(KRENGINE_UNIFORM_DIFFUSETEXTURE, 0);
// Sets the specularTexture variable to the second texture unit
setUniform(KRENGINE_UNIFORM_SPECULARTEXTURE, 1);
// Sets the normalTexture variable to the third texture unit
setUniform(KRENGINE_UNIFORM_NORMALTEXTURE, 2);
// Sets the shadowTexture variable to the fourth texture unit
setUniform(KRENGINE_UNIFORM_SHADOWTEXTURE1, 3);
setUniform(KRENGINE_UNIFORM_SHADOWTEXTURE2, 4);
setUniform(KRENGINE_UNIFORM_SHADOWTEXTURE3, 5);
setUniform(KRENGINE_UNIFORM_REFLECTIONCUBETEXTURE, 4);
setUniform(KRENGINE_UNIFORM_LIGHTMAPTEXTURE, 5);
setUniform(KRENGINE_UNIFORM_GBUFFER_FRAME, 6);
setUniform(KRENGINE_UNIFORM_GBUFFER_DEPTH, 7); // Texture unit 7 is used for reading the depth buffer in gBuffer pass #2 and in post-processing pass
setUniform(KRENGINE_UNIFORM_REFLECTIONTEXTURE, 7); // Texture unit 7 is used for the reflection map textures in gBuffer pass #3 and when using forward rendering
setUniform(KRENGINE_UNIFORM_DEPTH_FRAME, 0);
setUniform(KRENGINE_UNIFORM_RENDER_FRAME, 1);
setUniform(KRENGINE_UNIFORM_VOLUMETRIC_ENVIRONMENT_FRAME, 2);
if(m_pushConstantBuffer) {
vkCmdPushConstants(commandBuffer, m_pushConstantsLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, m_pushConstantBufferSize, m_pushConstantBuffer);
}
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, m_graphicsPipeline);
return true;
}
const char *KRPipeline::getKey() const {
return m_szKey;
}
VkPipeline& KRPipeline::getPipeline()
{
return m_graphicsPipeline;
}