Files
kraken/kraken/KRPointLight.cpp
kearwood 6b8404c3d7 Removed rim_color and rim_power arguments from KRPipeline::bind.
Updated the call site in KRMaterial to set rim_color and rim_power explicitly.
2022-07-08 00:01:40 -07:00

241 lines
9.4 KiB
C++
Executable File

//
// KRPointLight.cpp
// Kraken Engine
//
// Copyright 2022 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KREngine-common.h"
#include "KRPointLight.h"
#include "KRCamera.h"
#include "KRContext.h"
/* static */
void KRPointLight::InitNodeInfo(KrNodeInfo* nodeInfo)
{
KRLight::InitNodeInfo(nodeInfo);
// No additional members
}
KRPointLight::KRPointLight(KRScene &scene, std::string name) : KRLight(scene, name)
{
m_sphereVertices = NULL;
m_cVertices = 0;
}
KRPointLight::~KRPointLight()
{
if(m_sphereVertices) {
delete m_sphereVertices;
m_cVertices = 0;
}
}
std::string KRPointLight::getElementName() {
return "point_light";
}
AABB KRPointLight::getBounds() {
float influence_radius = m_decayStart - sqrt(m_intensity * 0.01f) / sqrt(KRLIGHT_MIN_INFLUENCE);
if(influence_radius < m_flareOcclusionSize) {
influence_radius = m_flareOcclusionSize;
}
return AABB::Create(Vector3::Create(-influence_radius), Vector3::Create(influence_radius), getModelMatrix());
}
void KRPointLight::render(RenderInfo& ri)
{
if(m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
KRLight::render(ri);
bool bVisualize = ri.renderPass == KRNode::RENDER_PASS_FORWARD_TRANSPARENT && ri.camera->settings.bShowDeferred;
if(ri.renderPass == KRNode::RENDER_PASS_DEFERRED_LIGHTS || bVisualize) {
// Lights are rendered on the second pass of the deferred renderer
std::vector<KRPointLight *> this_light;
this_light.push_back(this);
Vector3 light_position = getLocalTranslation();
float influence_radius = m_decayStart - sqrt(m_intensity * 0.01f) / sqrt(KRLIGHT_MIN_INFLUENCE);
Matrix4 sphereModelMatrix = Matrix4();
sphereModelMatrix.scale(influence_radius);
sphereModelMatrix.translate(light_position.x, light_position.y, light_position.z);
if(ri.viewport.visible(getBounds())) { // Cull out any lights not within the view frustrum
Vector3 view_light_position = Matrix4::Dot(ri.viewport.getViewMatrix(), light_position);
bool bInsideLight = view_light_position.sqrMagnitude() <= (influence_radius + ri.camera->settings.getPerspectiveNearZ()) * (influence_radius + ri.camera->settings.getPerspectiveNearZ());
std::string shader_name(bVisualize ? "visualize_overlay" : (bInsideLight ? "light_point_inside" : "light_point"));
PipelineInfo info{};
info.shader_name = &shader_name;
info.pCamera = ri.camera;
info.point_lights = &this_light;
info.renderPass = ri.renderPass;
if (bInsideLight) {
info.rasterMode = bVisualize ? RasterMode::kAdditiveNoTest : RasterMode::kAlphaBlendNoTest;
}
else {
info.rasterMode = bVisualize ? RasterMode::kAdditive : RasterMode::kAlphaBlend;
}
info.vertexAttributes = bInsideLight ? m_pContext->getMeshManager()->KRENGINE_VBO_DATA_2D_SQUARE_VERTICES.getVertexAttributes() : 1 << KRMesh::KRENGINE_ATTRIB_VERTEX;
info.modelFormat = bInsideLight ? ModelFormat::KRENGINE_MODEL_FORMAT_STRIP : ModelFormat::KRENGINE_MODEL_FORMAT_TRIANGLES;
KRPipeline *pShader = getContext().getPipelineManager()->getPipeline(*ri.surface, info);
pShader->setUniform(KRPipeline::KRENGINE_UNIFORM_LIGHT_COLOR, m_color);
pShader->setUniform(KRPipeline::KRENGINE_UNIFORM_LIGHT_INTENSITY, m_intensity * 0.01f);
pShader->setUniform(KRPipeline::KRENGINE_UNIFORM_LIGHT_DECAY_START, getDecayStart());
pShader->setUniform(KRPipeline::KRENGINE_UNIFORM_LIGHT_CUTOFF, KRLIGHT_MIN_INFLUENCE);
pShader->setUniform(KRPipeline::KRENGINE_UNIFORM_LIGHT_POSITION, light_position);
pShader->bind(ri.commandBuffer, *ri.camera, ri.viewport, sphereModelMatrix, &this_light, nullptr, nullptr, ri.renderPass);
if(bInsideLight) {
// Render a full screen quad
m_pContext->getMeshManager()->bindVBO(ri.commandBuffer, &m_pContext->getMeshManager()->KRENGINE_VBO_DATA_2D_SQUARE_VERTICES, 1.0f);
vkCmdDraw(ri.commandBuffer, 4, 1, 0, 0);
} else {
// Render sphere of light's influence
generateMesh();
GLDEBUG(glVertexAttribPointer(KRMesh::KRENGINE_ATTRIB_VERTEX, 3, GL_FLOAT, 0, 0, m_sphereVertices));
vkCmdDraw(ri.commandBuffer, m_cVertices, 1, 0, 0);
}
}
}
}
void KRPointLight::generateMesh() {
// Create a triangular facet approximation to a sphere
// Based on algorithm from Paul Bourke: http://paulbourke.net/miscellaneous/sphere_cylinder/
int iterations = 3;
int facet_count = (int)(pow(4, iterations) * 8);
if(m_cVertices != facet_count * 3) {
if(m_sphereVertices) {
free(m_sphereVertices);
m_sphereVertices = NULL;
}
m_cVertices = facet_count * 3;
class Facet3 {
public:
Facet3() {
}
~Facet3() {
}
Vector3 p1;
Vector3 p2;
Vector3 p3;
};
std::vector<Facet3> f = std::vector<Facet3>(facet_count);
int i,it;
float a;
Vector3 p[6] = {
Vector3::Create(0,0,1),
Vector3::Create(0,0,-1),
Vector3::Create(-1,-1,0),
Vector3::Create(1,-1,0),
Vector3::Create(1,1,0),
Vector3::Create(-1,1,0)
};
Vector3 pa,pb,pc;
int nt = 0,ntold;
/* Create the level 0 object */
a = 1.0f / sqrtf(2.0f);
for (i=0;i<6;i++) {
p[i].x *= a;
p[i].y *= a;
}
f[0].p1 = p[0]; f[0].p2 = p[3]; f[0].p3 = p[4];
f[1].p1 = p[0]; f[1].p2 = p[4]; f[1].p3 = p[5];
f[2].p1 = p[0]; f[2].p2 = p[5]; f[2].p3 = p[2];
f[3].p1 = p[0]; f[3].p2 = p[2]; f[3].p3 = p[3];
f[4].p1 = p[1]; f[4].p2 = p[4]; f[4].p3 = p[3];
f[5].p1 = p[1]; f[5].p2 = p[5]; f[5].p3 = p[4];
f[6].p1 = p[1]; f[6].p2 = p[2]; f[6].p3 = p[5];
f[7].p1 = p[1]; f[7].p2 = p[3]; f[7].p3 = p[2];
nt = 8;
/* Bisect each edge and move to the surface of a unit sphere */
for (it=0;it<iterations;it++) {
ntold = nt;
for (i=0;i<ntold;i++) {
pa.x = (f[i].p1.x + f[i].p2.x) / 2;
pa.y = (f[i].p1.y + f[i].p2.y) / 2;
pa.z = (f[i].p1.z + f[i].p2.z) / 2;
pb.x = (f[i].p2.x + f[i].p3.x) / 2;
pb.y = (f[i].p2.y + f[i].p3.y) / 2;
pb.z = (f[i].p2.z + f[i].p3.z) / 2;
pc.x = (f[i].p3.x + f[i].p1.x) / 2;
pc.y = (f[i].p3.y + f[i].p1.y) / 2;
pc.z = (f[i].p3.z + f[i].p1.z) / 2;
pa.normalize();
pb.normalize();
pc.normalize();
f[nt].p1 = f[i].p1; f[nt].p2 = pa; f[nt].p3 = pc; nt++;
f[nt].p1 = pa; f[nt].p2 = f[i].p2; f[nt].p3 = pb; nt++;
f[nt].p1 = pb; f[nt].p2 = f[i].p3; f[nt].p3 = pc; nt++;
f[i].p1 = pa;
f[i].p2 = pb;
f[i].p3 = pc;
}
}
m_sphereVertices = (float*)malloc(sizeof(float) * m_cVertices * 3);
assert(m_sphereVertices != NULL);
float*pDest = m_sphereVertices;
for(int facet_index=0; facet_index < facet_count; facet_index++) {
*pDest++ = f[facet_index].p1.x;
*pDest++ = f[facet_index].p1.y;
*pDest++ = f[facet_index].p1.z;
*pDest++ = f[facet_index].p2.x;
*pDest++ = f[facet_index].p2.y;
*pDest++ = f[facet_index].p2.z;
*pDest++ = f[facet_index].p3.x;
*pDest++ = f[facet_index].p3.y;
*pDest++ = f[facet_index].p3.z;
}
}
}