Files
kraken/kraken/KRDirectionalLight.cpp

177 lines
7.6 KiB
C++
Executable File

//
// KRDirectionalLight.cpp
// Kraken Engine
//
// Copyright 2023 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KREngine-common.h"
#include "KRDirectionalLight.h"
#include "KRPipeline.h"
#include "KRContext.h"
#include "assert.h"
using namespace hydra;
/* static */
void KRDirectionalLight::InitNodeInfo(KrNodeInfo* nodeInfo)
{
KRLight::InitNodeInfo(nodeInfo);
// No additional members
}
KRDirectionalLight::KRDirectionalLight(KRScene& scene, std::string name) : KRLight(scene, name)
{
}
KRDirectionalLight::~KRDirectionalLight()
{
}
std::string KRDirectionalLight::getElementName()
{
return "directional_light";
}
Vector3 KRDirectionalLight::getWorldLightDirection()
{
return Matrix4::Dot(getWorldRotation().rotationMatrix(), getLocalLightDirection());
}
Vector3 KRDirectionalLight::getLocalLightDirection()
{
return Vector3::Up(); //&KRF HACK changed from Vector3::Forward(); - to compensate for the way Maya handles post rotation.
}
int KRDirectionalLight::configureShadowBufferViewports(const KRViewport& viewport)
{
const float KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE = 1.25f; // Scale to apply to view frustrum bounds so that we don't need to refresh shadows on every frame
int cShadows = 1;
for (int iShadow = 0; iShadow < cShadows; iShadow++) {
/*
TODO - Determine if we still need this...
GLfloat shadowMinDepths[3][3] = {{0.0f, 0.0f, 0.0f},{0.0f, 0.0f, 0.0f},{0.0f, 0.05f, 0.3f}};
GLfloat shadowMaxDepths[3][3] = {{0.0f, 0.0f, 1.0f},{0.1f, 0.0f, 0.0f},{0.1f, 0.3f, 1.0f}};
float min_depth = 0.0f;
float max_depth = 1.0f;
*/
AABB worldSpacefrustrumSliceBounds = AABB::Create(Vector3::Create(-1.0f, -1.0f, -1.0f), Vector3::Create(1.0f, 1.0f, 1.0f), Matrix4::Invert(viewport.getViewProjectionMatrix()));
worldSpacefrustrumSliceBounds.scale(KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE);
Vector3 shadowLook = -Vector3::Normalize(getWorldLightDirection());
Vector3 shadowUp = Vector3::Create(0.0, 1.0, 0.0);
if (Vector3::Dot(shadowUp, shadowLook) > 0.99f) shadowUp = Vector3::Create(0.0, 0.0, 1.0); // Ensure shadow look direction is not parallel with the shadowUp direction
// Matrix4 matShadowView = Matrix4::LookAt(viewport.getCameraPosition() - shadowLook, viewport.getCameraPosition(), shadowUp);
// Matrix4 matShadowProjection = Matrix4();
// matShadowProjection.scale(0.001, 0.001, 0.001);
Matrix4 matShadowView = Matrix4::LookAt(worldSpacefrustrumSliceBounds.center() - shadowLook, worldSpacefrustrumSliceBounds.center(), shadowUp);
Matrix4 matShadowProjection = Matrix4();
AABB shadowSpaceFrustrumSliceBounds = AABB::Create(worldSpacefrustrumSliceBounds.min, worldSpacefrustrumSliceBounds.max, Matrix4::Invert(matShadowProjection));
AABB shadowSpaceSceneBounds = AABB::Create(getScene().getRootOctreeBounds().min, getScene().getRootOctreeBounds().max, Matrix4::Invert(matShadowProjection));
if (shadowSpaceSceneBounds.min.z < shadowSpaceFrustrumSliceBounds.min.z) shadowSpaceFrustrumSliceBounds.min.z = shadowSpaceSceneBounds.min.z; // Include any potential shadow casters that are outside the view frustrum
matShadowProjection.scale(1.0f / shadowSpaceFrustrumSliceBounds.size().x, 1.0f / shadowSpaceFrustrumSliceBounds.size().y, 1.0f / shadowSpaceFrustrumSliceBounds.size().z);
Matrix4 matBias;
matBias.bias();
matShadowProjection *= matBias;
KRViewport newShadowViewport = KRViewport(Vector2::Create(KRENGINE_SHADOW_MAP_WIDTH, KRENGINE_SHADOW_MAP_HEIGHT), matShadowView, matShadowProjection);
AABB prevShadowBounds = AABB::Create(-Vector3::One(), Vector3::One(), Matrix4::Invert(m_shadowViewports[iShadow].getViewProjectionMatrix()));
AABB minimumShadowBounds = AABB::Create(-Vector3::One(), Vector3::One(), Matrix4::Invert(newShadowViewport.getViewProjectionMatrix()));
minimumShadowBounds.scale(1.0f / KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE);
if (!prevShadowBounds.contains(minimumShadowBounds) || !shadowValid[iShadow] || true) { // FINDME, HACK - Re-generating the shadow map every frame. This should only be needed if the shadow contains non-static geometry
m_shadowViewports[iShadow] = newShadowViewport;
shadowValid[iShadow] = false;
fprintf(stderr, "Kraken - Generate shadow maps...\n");
}
}
return 1;
}
void KRDirectionalLight::render(RenderInfo& ri)
{
if (m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
KRLight::render(ri);
if (ri.renderPass == KRNode::RENDER_PASS_DEFERRED_LIGHTS) {
// Lights are rendered on the second pass of the deferred renderer
std::vector<KRDirectionalLight*> this_light;
this_light.push_back(this);
Matrix4 matModelViewInverseTranspose = ri.viewport.getViewMatrix() * getModelMatrix();
matModelViewInverseTranspose.transpose();
matModelViewInverseTranspose.invert();
Vector3 light_direction_view_space = getWorldLightDirection();
light_direction_view_space = Matrix4::Dot(matModelViewInverseTranspose, light_direction_view_space);
light_direction_view_space.normalize();
KRMeshManager::KRVBOData& vertices = getContext().getMeshManager()->KRENGINE_VBO_DATA_2D_SQUARE_VERTICES;
PipelineInfo info{};
std::string shader_name("light_directional");
info.shader_name = &shader_name;
info.pCamera = ri.camera;
info.directional_lights = &this_light;
info.renderPass = ri.renderPass;
info.rasterMode = RasterMode::kAdditiveNoTest;
info.vertexAttributes = vertices.getVertexAttributes();
info.modelFormat = ModelFormat::KRENGINE_MODEL_FORMAT_STRIP;
KRPipeline* pShader = getContext().getPipelineManager()->getPipeline(*ri.surface, info);
pShader->setPushConstant(KRPipeline::PushConstant::light_direction_view_space, light_direction_view_space);
pShader->setPushConstant(KRPipeline::PushConstant::light_color, m_color);
pShader->setPushConstant(KRPipeline::PushConstant::light_intensity, m_intensity * 0.01f);
pShader->bind(ri.commandBuffer, *ri.camera, ri.viewport, getModelMatrix(), nullptr, &this_light, nullptr, ri.renderPass);
// Render a full screen quad
m_pContext->getMeshManager()->bindVBO(ri.commandBuffer, &vertices, 1.0f);
vkCmdDraw(ri.commandBuffer, 4, 1, 0, 0);
}
}
AABB KRDirectionalLight::getBounds()
{
return AABB::Infinite();
}