Files
kraken/kraken/KROctree.cpp
2022-08-08 01:07:26 -07:00

180 lines
6.1 KiB
C++
Executable File

//
// KROctree.cpp
// Kraken Engine
//
// Copyright 2022 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "public/kraken.h"
#include "KROctree.h"
#include "KRNode.h"
#include "KRCollider.h"
KROctree::KROctree()
{
m_pRootNode = NULL;
}
KROctree::~KROctree()
{
if (m_pRootNode) {
delete m_pRootNode;
}
}
void KROctree::add(KRNode* pNode)
{
AABB nodeBounds = pNode->getBounds();
if (nodeBounds == AABB::Zero()) {
// This item is not visible, don't add it to the octree or outer scene nodes
} else if (nodeBounds == AABB::Infinite()) {
// This item is infinitely large; we track it separately
m_outerSceneNodes.insert(pNode);
} else {
if (m_pRootNode == NULL) {
// First item inserted, create a node large enough to fit it
m_pRootNode = new KROctreeNode(NULL, nodeBounds);
m_pRootNode->add(pNode);
} else {
// Keep encapsulating the root node until the new root contains the inserted node
bool bInsideRoot = false;
while (!bInsideRoot) {
AABB rootBounds = m_pRootNode->getBounds();
Vector3 rootSize = rootBounds.size();
if (nodeBounds.min.x < rootBounds.min.x || nodeBounds.min.y < rootBounds.min.y || nodeBounds.min.z < rootBounds.min.z) {
m_pRootNode = new KROctreeNode(NULL, AABB::Create(rootBounds.min - rootSize, rootBounds.max), 7, m_pRootNode);
} else if (nodeBounds.max.x > rootBounds.max.x || nodeBounds.max.y > rootBounds.max.y || nodeBounds.max.z > rootBounds.max.z) {
m_pRootNode = new KROctreeNode(NULL, AABB::Create(rootBounds.min, rootBounds.max + rootSize), 0, m_pRootNode);
} else {
bInsideRoot = true;
}
}
m_pRootNode->add(pNode);
}
}
}
void KROctree::remove(KRNode* pNode)
{
if (!m_outerSceneNodes.erase(pNode)) {
if (m_pRootNode) {
pNode->removeFromOctreeNodes();
}
}
shrink();
}
void KROctree::update(KRNode* pNode)
{
// TODO: This may be more efficient as an incremental operation rather than removing and re-adding the node
remove(pNode);
add(pNode);
shrink();
}
void KROctree::shrink()
{
if (m_pRootNode) {
while (m_pRootNode->canShrinkRoot()) {
KROctreeNode* newRoot = m_pRootNode->stripChild();
delete m_pRootNode;
m_pRootNode = newRoot;
if (m_pRootNode == NULL) return;
}
}
}
KROctreeNode* KROctree::getRootNode()
{
return m_pRootNode;
}
std::set<KRNode*>& KROctree::getOuterSceneNodes()
{
return m_outerSceneNodes;
}
bool KROctree::lineCast(const Vector3& v0, const Vector3& v1, HitInfo& hitinfo, unsigned int layer_mask)
{
bool hit_found = false;
std::vector<KRCollider*> outer_colliders;
for (std::set<KRNode*>::iterator outer_nodes_itr = m_outerSceneNodes.begin(); outer_nodes_itr != m_outerSceneNodes.end(); outer_nodes_itr++) {
KRCollider* collider = dynamic_cast<KRCollider*>(*outer_nodes_itr);
if (collider) {
outer_colliders.push_back(collider);
}
}
for (std::vector<KRCollider*>::iterator itr = outer_colliders.begin(); itr != outer_colliders.end(); itr++) {
if ((*itr)->lineCast(v0, v1, hitinfo, layer_mask)) hit_found = true;
}
if (m_pRootNode) {
if (m_pRootNode->lineCast(v0, v1, hitinfo, layer_mask)) hit_found = true;
}
return hit_found;
}
bool KROctree::rayCast(const Vector3& v0, const Vector3& dir, HitInfo& hitinfo, unsigned int layer_mask)
{
bool hit_found = false;
for (std::set<KRNode*>::iterator outer_nodes_itr = m_outerSceneNodes.begin(); outer_nodes_itr != m_outerSceneNodes.end(); outer_nodes_itr++) {
KRCollider* collider = dynamic_cast<KRCollider*>(*outer_nodes_itr);
if (collider) {
if (collider->rayCast(v0, dir, hitinfo, layer_mask)) hit_found = true;
}
}
if (m_pRootNode) {
if (m_pRootNode->rayCast(v0, dir, hitinfo, layer_mask)) hit_found = true;
}
return hit_found;
}
bool KROctree::sphereCast(const Vector3& v0, const Vector3& v1, float radius, HitInfo& hitinfo, unsigned int layer_mask)
{
bool hit_found = false;
std::vector<KRCollider*> outer_colliders;
for (std::set<KRNode*>::iterator outer_nodes_itr = m_outerSceneNodes.begin(); outer_nodes_itr != m_outerSceneNodes.end(); outer_nodes_itr++) {
KRCollider* collider = dynamic_cast<KRCollider*>(*outer_nodes_itr);
if (collider) {
outer_colliders.push_back(collider);
}
}
for (std::vector<KRCollider*>::iterator itr = outer_colliders.begin(); itr != outer_colliders.end(); itr++) {
if ((*itr)->sphereCast(v0, v1, radius, hitinfo, layer_mask)) hit_found = true;
}
if (m_pRootNode) {
if (m_pRootNode->sphereCast(v0, v1, radius, hitinfo, layer_mask)) hit_found = true;
}
return hit_found;
}