Files
kraken/kraken/KRCollider.cpp
Kearwood Gilbert 7e38a4c311 Added more files to CMakeLists.
Replaced KRHitInfo references with hitinfo.
Updated AudioUnitSampleType to always use floats as the Canonical types have been deprecated.  Int audio types no longer needed for ios.
2017-11-05 19:14:29 -08:00

230 lines
9.6 KiB
C++
Executable File

//
// KRCollider.cpp
// KREngine
//
// Copyright 2012 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KREngine-common.h"
#include "KRCollider.h"
#include "KRContext.h"
#include "KRMesh.h"
KRCollider::KRCollider(KRScene &scene, std::string collider_name, std::string model_name, unsigned int layer_mask, float audio_occlusion) : KRNode(scene, collider_name) {
m_model_name = model_name;
m_layer_mask = layer_mask;
m_audio_occlusion = audio_occlusion;
}
KRCollider::~KRCollider() {
}
std::string KRCollider::getElementName() {
return "collider";
}
tinyxml2::XMLElement *KRCollider::saveXML( tinyxml2::XMLNode *parent)
{
tinyxml2::XMLElement *e = KRNode::saveXML(parent);
e->SetAttribute("mesh", m_model_name.c_str());
e->SetAttribute("layer_mask", m_layer_mask);
e->SetAttribute("audio_occlusion", m_audio_occlusion);
return e;
}
void KRCollider::loadXML(tinyxml2::XMLElement *e) {
KRNode::loadXML(e);
m_model_name = e->Attribute("mesh");
m_layer_mask = 65535;
if(e->QueryUnsignedAttribute("layer_mask", &m_layer_mask) != tinyxml2::XML_SUCCESS) {
m_layer_mask = 65535;
}
m_audio_occlusion = 1.0f;
if(e->QueryFloatAttribute("audio_occlusion", &m_audio_occlusion) != tinyxml2::XML_SUCCESS) {
m_audio_occlusion = 1.0f;
}
}
void KRCollider::loadModel() {
if(m_models.size() == 0) {
m_models = m_pContext->getMeshManager()->getModel(m_model_name.c_str()); // The model manager returns the LOD levels in sorted order, with the highest detail first
if(m_models.size() > 0) {
getScene().notify_sceneGraphModify(this);
}
}
}
AABB KRCollider::getBounds() {
loadModel();
if(m_models.size() > 0) {
return AABB(m_models[0]->getMinPoint(), m_models[0]->getMaxPoint(), getModelMatrix());
} else {
return AABB::Infinite();
}
}
bool KRCollider::lineCast(const Vector3 &v0, const Vector3 &v1, HitInfo &hitinfo, unsigned int layer_mask)
{
if(layer_mask & m_layer_mask ) { // Only test if layer masks have a common bit set
loadModel();
if(m_models.size()) {
if(getBounds().intersectsLine(v0, v1)) {
Vector3 v0_model_space = Matrix4::Dot(getInverseModelMatrix(), v0);
Vector3 v1_model_space = Matrix4::Dot(getInverseModelMatrix(), v1);
HitInfo hitinfo_model_space;
if(hitinfo.didHit()) {
Vector3 hit_position_model_space = Matrix4::Dot(getInverseModelMatrix(), hitinfo.getPosition());
hitinfo_model_space = HitInfo(hit_position_model_space, Matrix4::DotNoTranslate(getInverseModelMatrix(), hitinfo.getNormal()), (hit_position_model_space - v0_model_space).magnitude(), hitinfo.getNode());
}
if(m_models[0]->lineCast(v0_model_space, v1_model_space, hitinfo_model_space)) {
Vector3 hit_position_world_space = Matrix4::Dot(getModelMatrix(), hitinfo_model_space.getPosition());
hitinfo = HitInfo(hit_position_world_space, Vector3::Normalize(Matrix4::DotNoTranslate(getModelMatrix(), hitinfo_model_space.getNormal())), (hit_position_world_space - v0).magnitude(), this);
return true;
}
}
}
}
return false;
}
bool KRCollider::rayCast(const Vector3 &v0, const Vector3 &dir, HitInfo &hitinfo, unsigned int layer_mask)
{
if(layer_mask & m_layer_mask) { // Only test if layer masks have a common bit set
loadModel();
if(m_models.size()) {
if(getBounds().intersectsRay(v0, dir)) {
Vector3 v0_model_space = Matrix4::Dot(getInverseModelMatrix(), v0);
Vector3 dir_model_space = Vector3::Normalize(Matrix4::DotNoTranslate(getInverseModelMatrix(), dir));
HitInfo hitinfo_model_space;
if(hitinfo.didHit()) {
Vector3 hit_position_model_space = Matrix4::Dot(getInverseModelMatrix(), hitinfo.getPosition());
hitinfo_model_space = HitInfo(hit_position_model_space, Vector3::Normalize(Matrix4::DotNoTranslate(getInverseModelMatrix(), hitinfo.getNormal())), (hit_position_model_space - v0_model_space).magnitude(), hitinfo.getNode());
}
if(m_models[0]->rayCast(v0_model_space, dir_model_space, hitinfo_model_space)) {
Vector3 hit_position_world_space = Matrix4::Dot(getModelMatrix(), hitinfo_model_space.getPosition());
hitinfo = HitInfo(hit_position_world_space, Vector3::Normalize(Matrix4::DotNoTranslate(getModelMatrix(), hitinfo_model_space.getNormal())), (hit_position_world_space - v0).magnitude(), this);
return true;
}
}
}
}
return false;
}
bool KRCollider::sphereCast(const Vector3 &v0, const Vector3 &v1, float radius, HitInfo &hitinfo, unsigned int layer_mask)
{
if(layer_mask & m_layer_mask) { // Only test if layer masks have a common bit set
loadModel();
if(m_models.size()) {
AABB sphereCastBounds = AABB( // TODO - Need to cache this; perhaps encasulate within a "spherecast" class to be passed through these functions
Vector3(KRMIN(v0.x, v1.x) - radius, KRMIN(v0.y, v1.y) - radius, KRMIN(v0.z, v1.z) - radius),
Vector3(KRMAX(v0.x, v1.x) + radius, KRMAX(v0.y, v1.y) + radius, KRMAX(v0.z, v1.z) + radius)
);
if(getBounds().intersects(sphereCastBounds)) {
if(m_models[0]->sphereCast(getModelMatrix(), v0, v1, radius, hitinfo)) {
hitinfo = HitInfo(hitinfo.getPosition(), hitinfo.getNormal(), hitinfo.getDistance(), this);
return true;
}
}
}
}
return false;
}
unsigned int KRCollider::getLayerMask()
{
return m_layer_mask;
}
void KRCollider::setLayerMask(unsigned int layer_mask)
{
m_layer_mask = layer_mask;
}
float KRCollider::getAudioOcclusion()
{
return m_audio_occlusion;
}
void KRCollider::setAudioOcclusion(float audio_occlusion)
{
m_audio_occlusion = audio_occlusion;
}
void KRCollider::render(KRCamera *pCamera, std::vector<KRPointLight *> &point_lights, std::vector<KRDirectionalLight *> &directional_lights, std::vector<KRSpotLight *>&spot_lights, const KRViewport &viewport, KRNode::RenderPass renderPass)
{
if(m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
KRNode::render(pCamera, point_lights, directional_lights, spot_lights, viewport, renderPass);
if(renderPass == KRNode::RENDER_PASS_FORWARD_TRANSPARENT && pCamera->settings.debug_display == KRRenderSettings::KRENGINE_DEBUG_DISPLAY_COLLIDERS) {
loadModel();
if(m_models.size()) {
GL_PUSH_GROUP_MARKER("Debug Overlays");
KRShader *pShader = getContext().getShaderManager()->getShader("visualize_overlay", pCamera, point_lights, directional_lights, spot_lights, 0, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, renderPass);
if(getContext().getShaderManager()->selectShader(*pCamera, pShader, viewport, getModelMatrix(), point_lights, directional_lights, spot_lights, 0, renderPass, Vector3::Zero(), 0.0f, Vector4::Zero())) {
// Enable additive blending
GLDEBUG(glEnable(GL_BLEND));
GLDEBUG(glBlendFunc(GL_ONE, GL_ONE));
// Disable z-buffer write
GLDEBUG(glDepthMask(GL_FALSE));
// Enable z-buffer test
GLDEBUG(glEnable(GL_DEPTH_TEST));
GLDEBUG(glDepthFunc(GL_LEQUAL));
GLDEBUG(glDepthRangef(0.0, 1.0));
for(int i=0; i < m_models[0]->getSubmeshCount(); i++) {
m_models[0]->renderSubmesh(i, renderPass, getName(), "visualize_overlay", 1.0f);
}
// Enable alpha blending
GLDEBUG(glEnable(GL_BLEND));
GLDEBUG(glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA));
}
GL_POP_GROUP_MARKER;
}
}
}