Files
kraken/KREngine/kraken/KRMeshManager.cpp

478 lines
20 KiB
C++

//
// KRMeshManager.cpp
// KREngine
//
// Copyright 2012 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KREngine-common.h"
#include "KRMeshManager.h"
#include "KRMesh.h"
#include "KRMeshCube.h"
#include "KRMeshSphere.h"
KRMeshManager::KRMeshManager(KRContext &context) : KRContextObject(context) {
m_currentVBO.vbo_handle = -1;
m_currentVBO.vbo_handle_indexes = -1;
m_currentVBO.vao_handle = -1;
m_currentVBO.data = NULL;
m_vboMemUsed = 0;
m_randomParticleVertexData = NULL;
m_volumetricLightingVertexData = NULL;
m_memoryTransferredThisFrame = 0;
// addModel(new KRMeshCube(context)); // FINDME - HACK! This needs to be fixed, as it currently segfaults
addModel(new KRMeshSphere(context));
m_draw_call_logging_enabled = false;
m_draw_call_log_used = false;
}
KRMeshManager::~KRMeshManager() {
for(unordered_multimap<std::string, KRMesh *>::iterator itr = m_models.begin(); itr != m_models.end(); ++itr){
delete (*itr).second;
}
m_models.empty();
if(m_randomParticleVertexData != NULL) delete m_randomParticleVertexData;
if(m_volumetricLightingVertexData != NULL) delete m_volumetricLightingVertexData;
}
KRMesh *KRMeshManager::loadModel(const char *szName, KRDataBlock *pData) {
KRMesh *pModel = new KRMesh(*m_pContext, szName, pData);
addModel(pModel);
return pModel;
}
void KRMeshManager::addModel(KRMesh *model) {
std::string lowerName = model->getLODBaseName();
std::transform(lowerName.begin(), lowerName.end(),
lowerName.begin(), ::tolower);
m_models.insert(std::pair<std::string, KRMesh *>(lowerName, model));
}
std::vector<KRMesh *> KRMeshManager::getModel(const char *szName) {
std::string lowerName = szName;
std::transform(lowerName.begin(), lowerName.end(),
lowerName.begin(), ::tolower);
std::vector<KRMesh *> matching_models;
std::pair<unordered_multimap<std::string, KRMesh *>::iterator, unordered_multimap<std::string, KRMesh *>::iterator> range = m_models.equal_range(lowerName);
for(unordered_multimap<std::string, KRMesh *>::iterator itr_match = range.first; itr_match != range.second; itr_match++) {
matching_models.push_back(itr_match->second);
}
std::sort(matching_models.begin(), matching_models.end(), KRMesh::lod_sort_predicate);
if(matching_models.size() == 0) {
fprintf(stderr, "ERROR: Model not found: %s\n", lowerName.c_str());
}
return matching_models;
}
unordered_multimap<std::string, KRMesh *> &KRMeshManager::getModels() {
return m_models;
}
void KRMeshManager::unbindVBO() {
if(m_currentVBO.data != NULL) {
GLDEBUG(glBindBuffer(GL_ARRAY_BUFFER, 0));
GLDEBUG(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
m_currentVBO.size = 0;
m_currentVBO.data = NULL;
m_currentVBO.vbo_handle = -1;
m_currentVBO.vbo_handle_indexes = -1;
m_currentVBO.vao_handle = -1;
}
}
void KRMeshManager::releaseVBO(GLvoid *data)
{
if(m_currentVBO.data == data) {
unbindVBO();
}
vbo_info_type vbo_to_release;
if(m_vbosActive.find(data) != m_vbosActive.end()) {
fprintf(stderr, "glFinish called due to releasing a VBO that is active in the current frame.\n");
GLDEBUG(glFinish());
// The VBO is active
vbo_to_release = m_vbosActive[data];
m_vbosActive.erase(data);
} else {
// The VBO is inactive
vbo_to_release = m_vbosPool[data];
m_vbosPool.erase(data);
}
m_vboMemUsed -= vbo_to_release.size;
#if GL_OES_vertex_array_object
GLDEBUG(glDeleteVertexArraysOES(1, &vbo_to_release.vao_handle));
#endif
GLDEBUG(glDeleteBuffers(1, &vbo_to_release.vbo_handle));
if(vbo_to_release.vbo_handle_indexes != -1) {
GLDEBUG(glDeleteBuffers(1, &vbo_to_release.vbo_handle_indexes));
}
}
void KRMeshManager::bindVBO(GLvoid *data, GLsizeiptr size, GLvoid *index_data, GLsizeiptr index_data_size, bool enable_vertex, bool enable_normal, bool enable_tangent, bool enable_uva, bool enable_uvb, bool enable_bone_indexes, bool enable_bone_weights, bool static_vbo) {
if(m_currentVBO.data != data || m_currentVBO.size != size) {
if(m_vbosActive.find(data) != m_vbosActive.end()) {
m_currentVBO = m_vbosActive[data];
#if GL_OES_vertex_array_object
GLDEBUG(glBindVertexArrayOES(m_currentVBO.vao_handle));
#else
GLDEBUG(glBindBuffer(GL_ARRAY_BUFFER, m_currentVBO.vbo_handle));
configureAttribs(enable_vertex, enable_normal, enable_tangent, enable_uva, enable_uvb, enable_bone_indexes, enable_bone_weights);
if(m_currentVBO.vbo_handle_indexes == -1) {
GLDEBUG(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
} else {
GLDEBUG(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_currentVBO.vbo_handle_indexes));
}
#endif
} else if(m_vbosPool.find(data) != m_vbosPool.end()) {
m_currentVBO = m_vbosPool[data];
m_vbosPool.erase(data);
m_vbosActive[data] = m_currentVBO;
#if GL_OES_vertex_array_object
GLDEBUG(glBindVertexArrayOES(m_currentVBO.vao_handle));
#else
GLDEBUG(glBindBuffer(GL_ARRAY_BUFFER, m_currentVBO.vbo_handle));
configureAttribs(enable_vertex, enable_normal, enable_tangent, enable_uva, enable_uvb, enable_bone_indexes, enable_bone_weights);
if(m_currentVBO.vbo_handle_indexes == -1) {
GLDEBUG(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
} else {
GLDEBUG(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_currentVBO.vbo_handle_indexes));
}
#endif
} else {
while(m_vbosPool.size() + m_vbosActive.size() + 1 >= KRContext::KRENGINE_MAX_VBO_HANDLES || m_vboMemUsed + size + index_data_size >= KRContext::KRENGINE_MAX_VBO_MEM) {
if(m_vbosPool.empty()) {
fprintf(stderr, "flushBuffers due to VBO exhaustion...\n");
m_pContext->rotateBuffers(false);
}
unordered_map<GLvoid *, vbo_info_type>::iterator first_itr = m_vbosPool.begin();
vbo_info_type firstVBO = first_itr->second;
#if GL_OES_vertex_array_object
GLDEBUG(glDeleteVertexArraysOES(1, &firstVBO.vao_handle));
#endif
GLDEBUG(glDeleteBuffers(1, &firstVBO.vbo_handle));
if(firstVBO.vbo_handle_indexes != -1) {
GLDEBUG(glDeleteBuffers(1, &firstVBO.vbo_handle_indexes));
}
m_vboMemUsed -= firstVBO.size;
m_vbosPool.erase(first_itr);
fprintf(stderr, "VBO Swapping...\n");
}
m_currentVBO.vao_handle = -1;
m_currentVBO.vbo_handle = -1;
m_currentVBO.vbo_handle_indexes = -1;
GLDEBUG(glGenBuffers(1, &m_currentVBO.vbo_handle));
if(index_data != NULL) {
GLDEBUG(glGenBuffers(1, &m_currentVBO.vbo_handle_indexes));
}
#if GL_OES_vertex_array_object
GLDEBUG(glGenVertexArraysOES(1, &m_currentVBO.vao_handle));
GLDEBUG(glBindVertexArrayOES(m_currentVBO.vao_handle));
#endif
GLDEBUG(glBindBuffer(GL_ARRAY_BUFFER, m_currentVBO.vbo_handle));
GLDEBUG(glBufferData(GL_ARRAY_BUFFER, size, data, static_vbo ? GL_STATIC_DRAW : GL_DYNAMIC_DRAW));
m_memoryTransferredThisFrame += size;
m_vboMemUsed += size;
configureAttribs(enable_vertex, enable_normal, enable_tangent, enable_uva, enable_uvb, enable_bone_indexes, enable_bone_weights);
m_currentVBO.size = size;
m_currentVBO.data = data;
if(index_data == NULL) {
GLDEBUG(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
} else {
GLDEBUG(glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_currentVBO.vbo_handle_indexes));
GLDEBUG(glBufferData(GL_ELEMENT_ARRAY_BUFFER, index_data_size, index_data, static_vbo ? GL_STATIC_DRAW : GL_DYNAMIC_DRAW));
m_memoryTransferredThisFrame += index_data_size;
m_vboMemUsed += index_data_size;
m_currentVBO.size += index_data_size;
}
m_vbosActive[data] = m_currentVBO;
}
}
}
void KRMeshManager::configureAttribs(bool enable_vertex, bool enable_normal, bool enable_tangent, bool enable_uva, bool enable_uvb, bool enable_bone_indexes, bool enable_bone_weights)
{
__int32_t attributes = 0;
if(enable_vertex) {
attributes |= (1 << KRMesh::KRENGINE_ATTRIB_VERTEX);
GLDEBUG(glEnableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_VERTEX));
} else {
GLDEBUG(glDisableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_VERTEX));
}
if(enable_normal) {
attributes |= (1 << KRMesh::KRENGINE_ATTRIB_NORMAL);
GLDEBUG(glEnableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_NORMAL));
} else {
GLDEBUG(glDisableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_NORMAL));
}
if(enable_tangent) {
attributes |= (1 << KRMesh::KRENGINE_ATTRIB_TANGENT);
GLDEBUG(glEnableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_TANGENT));
} else {
GLDEBUG(glDisableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_TANGENT));
}
if(enable_uva) {
attributes |= (1 << KRMesh::KRENGINE_ATTRIB_TEXUVA);
GLDEBUG(glEnableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_TEXUVA));
} else {
GLDEBUG(glDisableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_TEXUVA));
}
if(enable_uvb) {
attributes |= (1 << KRMesh::KRENGINE_ATTRIB_TEXUVB);
GLDEBUG(glEnableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_TEXUVB));
} else {
GLDEBUG(glDisableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_TEXUVB));
}
if(enable_bone_indexes) {
attributes |= (1 << KRMesh::KRENGINE_ATTRIB_BONEINDEXES);
GLDEBUG(glEnableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_BONEINDEXES));
} else {
GLDEBUG(glDisableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_BONEINDEXES));
}
if(enable_bone_weights) {
attributes |= (1 << KRMesh::KRENGINE_ATTRIB_BONEWEIGHTS);
GLDEBUG(glEnableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_BONEWEIGHTS));
} else {
GLDEBUG(glDisableVertexAttribArray(KRMesh::KRENGINE_ATTRIB_BONEWEIGHTS));
}
GLsizei data_size = (GLsizei)KRMesh::VertexSizeForAttributes(attributes);
if(enable_vertex) {
GLDEBUG(glVertexAttribPointer(KRMesh::KRENGINE_ATTRIB_VERTEX, 3, GL_FLOAT, GL_FALSE, data_size, BUFFER_OFFSET(KRMesh::AttributeOffset(KRMesh::KRENGINE_ATTRIB_VERTEX, attributes))));
}
if(enable_normal) {
GLDEBUG(glVertexAttribPointer(KRMesh::KRENGINE_ATTRIB_NORMAL, 3, GL_FLOAT, GL_FALSE, data_size, BUFFER_OFFSET(KRMesh::AttributeOffset(KRMesh::KRENGINE_ATTRIB_NORMAL, attributes))));
}
if(enable_tangent) {
GLDEBUG(glVertexAttribPointer(KRMesh::KRENGINE_ATTRIB_TANGENT, 3, GL_FLOAT, GL_FALSE, data_size, BUFFER_OFFSET(KRMesh::AttributeOffset(KRMesh::KRENGINE_ATTRIB_TANGENT, attributes))));
}
if(enable_uva) {
GLDEBUG(glVertexAttribPointer(KRMesh::KRENGINE_ATTRIB_TEXUVA, 2, GL_FLOAT, GL_FALSE, data_size, BUFFER_OFFSET(KRMesh::AttributeOffset(KRMesh::KRENGINE_ATTRIB_TEXUVA, attributes))));
}
if(enable_uvb) {
GLDEBUG(glVertexAttribPointer(KRMesh::KRENGINE_ATTRIB_TEXUVB, 2, GL_FLOAT, GL_FALSE, data_size, BUFFER_OFFSET(KRMesh::AttributeOffset(KRMesh::KRENGINE_ATTRIB_TEXUVB, attributes))));
}
if(enable_bone_indexes ) {
GLDEBUG(glVertexAttribPointer(KRMesh::KRENGINE_ATTRIB_BONEINDEXES, 4, GL_UNSIGNED_BYTE, GL_FALSE, data_size, BUFFER_OFFSET(KRMesh::AttributeOffset(KRMesh::KRENGINE_ATTRIB_BONEINDEXES, attributes))));
}
if(enable_bone_weights) {
GLDEBUG(glVertexAttribPointer(KRMesh::KRENGINE_ATTRIB_BONEWEIGHTS, 4, GL_FLOAT, GL_FALSE, data_size, BUFFER_OFFSET(KRMesh::AttributeOffset(KRMesh::KRENGINE_ATTRIB_BONEWEIGHTS, attributes))));
}
}
long KRMeshManager::getMemUsed()
{
return m_vboMemUsed;
}
long KRMeshManager::getMemActive()
{
long mem_active = 0;
for(unordered_map<GLvoid *, vbo_info_type>::iterator itr = m_vbosActive.begin(); itr != m_vbosActive.end(); itr++) {
mem_active += (*itr).second.size;
}
return mem_active;
}
void KRMeshManager::rotateBuffers(bool new_frame)
{
m_vbosPool.insert(m_vbosActive.begin(), m_vbosActive.end());
m_vbosActive.clear();
if(m_currentVBO.data != NULL) {
// Ensure that the currently active VBO does not get flushed to free memory
m_vbosPool.erase(m_currentVBO.data);
m_vbosActive[m_currentVBO.data] = m_currentVBO;
}
}
KRMeshManager::VolumetricLightingVertexData *KRMeshManager::getVolumetricLightingVertexes()
{
if(m_volumetricLightingVertexData == NULL) {
m_volumetricLightingVertexData = (VolumetricLightingVertexData *)malloc(sizeof(VolumetricLightingVertexData) * KRENGINE_MAX_VOLUMETRIC_PLANES * 6);
int iVertex=0;
for(int iPlane=0; iPlane < KRENGINE_MAX_VOLUMETRIC_PLANES; iPlane++) {
m_volumetricLightingVertexData[iVertex].vertex.x = -1.0f;
m_volumetricLightingVertexData[iVertex].vertex.y = -1.0f;
m_volumetricLightingVertexData[iVertex].vertex.z = iPlane;
iVertex++;
m_volumetricLightingVertexData[iVertex].vertex.x = 1.0f;
m_volumetricLightingVertexData[iVertex].vertex.y = -1.0f;
m_volumetricLightingVertexData[iVertex].vertex.z = iPlane;
iVertex++;
m_volumetricLightingVertexData[iVertex].vertex.x = -1.0f;
m_volumetricLightingVertexData[iVertex].vertex.y = 1.0f;
m_volumetricLightingVertexData[iVertex].vertex.z = iPlane;
iVertex++;
m_volumetricLightingVertexData[iVertex].vertex.x = -1.0f;
m_volumetricLightingVertexData[iVertex].vertex.y = 1.0f;
m_volumetricLightingVertexData[iVertex].vertex.z = iPlane;
iVertex++;
m_volumetricLightingVertexData[iVertex].vertex.x = 1.0f;
m_volumetricLightingVertexData[iVertex].vertex.y = -1.0f;
m_volumetricLightingVertexData[iVertex].vertex.z = iPlane;
iVertex++;
m_volumetricLightingVertexData[iVertex].vertex.x = 1.0f;
m_volumetricLightingVertexData[iVertex].vertex.y = 1.0f;
m_volumetricLightingVertexData[iVertex].vertex.z = iPlane;
iVertex++;
// -1.0f, -1.0f,
// 1.0f, -1.0f,
// -1.0f, 1.0f,
// 1.0f, 1.0f,
}
}
return m_volumetricLightingVertexData;
}
KRMeshManager::RandomParticleVertexData *KRMeshManager::getRandomParticles()
{
if(m_randomParticleVertexData == NULL) {
m_randomParticleVertexData = (RandomParticleVertexData *)malloc(sizeof(RandomParticleVertexData) * KRENGINE_MAX_RANDOM_PARTICLES * 3);
// Generate vertices for randomly placed equilateral triangles with a side length of 1 and an origin point centered so that an inscribed circle can be efficiently rendered without wasting fill
float equilateral_triangle_height = sqrt(3.0f) * 0.5f;
float inscribed_circle_radius = 1.0f / (2.0f * sqrt(3.0f));
int iVertex=0;
for(int iParticle=0; iParticle < KRENGINE_MAX_RANDOM_PARTICLES; iParticle++) {
m_randomParticleVertexData[iVertex].vertex.x = (float)(arc4random() % 2000) / 1000.0f - 1000.0f;
m_randomParticleVertexData[iVertex].vertex.y = (float)(arc4random() % 2000) / 1000.0f - 1000.0f;
m_randomParticleVertexData[iVertex].vertex.z = (float)(arc4random() % 2000) / 1000.0f - 1000.0f;
m_randomParticleVertexData[iVertex].uva.u = -0.5f;
m_randomParticleVertexData[iVertex].uva.v = -inscribed_circle_radius;
iVertex++;
m_randomParticleVertexData[iVertex].vertex.x = m_randomParticleVertexData[iVertex-1].vertex.x;
m_randomParticleVertexData[iVertex].vertex.y = m_randomParticleVertexData[iVertex-1].vertex.y;
m_randomParticleVertexData[iVertex].vertex.z = m_randomParticleVertexData[iVertex-1].vertex.z;
m_randomParticleVertexData[iVertex].uva.u = 0.5f;
m_randomParticleVertexData[iVertex].uva.v = -inscribed_circle_radius;
iVertex++;
m_randomParticleVertexData[iVertex].vertex.x = m_randomParticleVertexData[iVertex-1].vertex.x;
m_randomParticleVertexData[iVertex].vertex.y = m_randomParticleVertexData[iVertex-1].vertex.y;
m_randomParticleVertexData[iVertex].vertex.z = m_randomParticleVertexData[iVertex-1].vertex.z;
m_randomParticleVertexData[iVertex].uva.u = 0.0f;
m_randomParticleVertexData[iVertex].uva.v = -inscribed_circle_radius + equilateral_triangle_height;
iVertex++;
}
}
return m_randomParticleVertexData;
}
void KRMeshManager::startFrame(float deltaTime)
{
m_memoryTransferredThisFrame = 0;
if(m_draw_call_log_used) {
// Only log draw calls on the next frame if the draw call log was used on last frame
m_draw_call_log_used = false;
m_draw_call_logging_enabled = true;
}
m_draw_calls.clear();
}
void KRMeshManager::endFrame(float deltaTime)
{
}
long KRMeshManager::getMemoryTransferedThisFrame()
{
return m_memoryTransferredThisFrame;
}
int KRMeshManager::getActiveVBOCount()
{
return m_vbosActive.size();
}
int KRMeshManager::getPoolVBOCount()
{
return m_vbosPool.size();
}
void KRMeshManager::log_draw_call(KRNode::RenderPass pass, const std::string &object_name, const std::string &material_name, int vertex_count)
{
if(m_draw_call_logging_enabled) {
draw_call_info info;
info.pass = pass;
strncpy(info.object_name, object_name.c_str(), 256);
strncpy(info.material_name, material_name.c_str(), 256);
info.vertex_count = vertex_count;
m_draw_calls.push_back(info);
}
}
std::vector<KRMeshManager::draw_call_info> KRMeshManager::getDrawCalls()
{
m_draw_call_log_used = true;
return m_draw_calls;
}