Files
kraken/kraken/KRModel.cpp
Kearwood Gilbert ef5b940eaf Windows port WIP
--HG--
branch : feature-windows-support
2017-01-08 21:20:53 -08:00

265 lines
10 KiB
C++
Executable File

//
// KRModel.cpp
// KREngine
//
// Copyright 2012 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KREngine-common.h"
#include "KRModel.h"
#include "KRContext.h"
#include "KRMesh.h"
#include "KRQuaternion.h"
KRModel::KRModel(KRScene &scene, std::string instance_name, std::string model_name, std::string light_map, float lod_min_coverage, bool receives_shadow, bool faces_camera, KRVector3 rim_color, float rim_power) : KRNode(scene, instance_name) {
m_lightMap = light_map;
m_pLightMap = NULL;
m_model_name = model_name;
m_min_lod_coverage = lod_min_coverage;
m_receivesShadow = receives_shadow;
m_faces_camera = faces_camera;
m_rim_color = rim_color;
m_rim_power = rim_power;
m_boundsCachedMat.c[0] = -1.0f;
m_boundsCachedMat.c[1] = -1.0f;
m_boundsCachedMat.c[2] = -1.0f;
m_boundsCachedMat.c[3] = -1.0f;
m_boundsCachedMat.c[4] = -1.0f;
m_boundsCachedMat.c[5] = -1.0f;
m_boundsCachedMat.c[6] = -1.0f;
m_boundsCachedMat.c[7] = -1.0f;
m_boundsCachedMat.c[8] = -1.0f;
m_boundsCachedMat.c[9] = -1.0f;
m_boundsCachedMat.c[10] = -1.0f;
m_boundsCachedMat.c[11] = -1.0f;
m_boundsCachedMat.c[12] = -1.0f;
m_boundsCachedMat.c[13] = -1.0f;
m_boundsCachedMat.c[14] = -1.0f;
m_boundsCachedMat.c[15] = -1.0f;
}
KRModel::~KRModel() {
}
std::string KRModel::getElementName() {
return "model";
}
tinyxml2::XMLElement *KRModel::saveXML( tinyxml2::XMLNode *parent)
{
tinyxml2::XMLElement *e = KRNode::saveXML(parent);
e->SetAttribute("mesh", m_model_name.c_str());
e->SetAttribute("light_map", m_lightMap.c_str());
e->SetAttribute("lod_min_coverage", m_min_lod_coverage);
e->SetAttribute("receives_shadow", m_receivesShadow ? "true" : "false");
e->SetAttribute("faces_camera", m_faces_camera ? "true" : "false");
m_rim_color.setXMLAttribute("rim_color", e, KRVector3::Zero());
e->SetAttribute("rim_power", m_rim_power);
return e;
}
void KRModel::setRimColor(const KRVector3 &rim_color)
{
m_rim_color = rim_color;
}
void KRModel::setRimPower(float rim_power)
{
m_rim_power = rim_power;
}
KRVector3 KRModel::getRimColor()
{
return m_rim_color;
}
float KRModel::getRimPower()
{
return m_rim_power;
}
void KRModel::setLightMap(const std::string &name)
{
m_lightMap = name;
m_pLightMap = NULL;
}
std::string KRModel::getLightMap()
{
return m_lightMap;
}
void KRModel::loadModel() {
if(m_models.size() == 0) {
std::vector<KRMesh *> models = m_pContext->getMeshManager()->getModel(m_model_name.c_str()); // The model manager returns the LOD levels in sorted order, with the highest detail first
unordered_map<KRMesh *, std::vector<KRBone *> > bones;
if(models.size() > 0) {
bool all_bones_found = true;
for(std::vector<KRMesh *>::iterator model_itr = models.begin(); model_itr != models.end(); model_itr++) {
KRMesh *model = *model_itr;
std::vector<KRBone *> model_bones;
int bone_count = model->getBoneCount();
for(int bone_index=0; bone_index < bone_count; bone_index++) {
KRBone *matching_bone = dynamic_cast<KRBone *>(getScene().getRootNode()->find<KRNode>(model->getBoneName(bone_index)));
if(matching_bone) {
model_bones.push_back(matching_bone);
} else {
all_bones_found = false; // Reject when there are any missing bones or multiple matches
}
}
bones[model] = model_bones;
}
if(all_bones_found) {
m_models = models;
m_bones = bones;
getScene().notify_sceneGraphModify(this);
}
invalidateBounds();
}
}
}
void KRModel::render(KRCamera *pCamera, std::vector<KRPointLight *> &point_lights, std::vector<KRDirectionalLight *> &directional_lights, std::vector<KRSpotLight *>&spot_lights, const KRViewport &viewport, KRNode::RenderPass renderPass) {
if(m_lod_visible >= LOD_VISIBILITY_PRESTREAM && renderPass == KRNode::RENDER_PASS_PRESTREAM) {
preStream(viewport);
}
if(m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
KRNode::render(pCamera, point_lights, directional_lights, spot_lights, viewport, renderPass);
if(renderPass != KRNode::RENDER_PASS_DEFERRED_LIGHTS && renderPass != KRNode::RENDER_PASS_ADDITIVE_PARTICLES && renderPass != KRNode::RENDER_PASS_PARTICLE_OCCLUSION && renderPass != KRNode::RENDER_PASS_VOLUMETRIC_EFFECTS_ADDITIVE && renderPass != KRNode::RENDER_PASS_GENERATE_SHADOWMAPS && renderPass != KRNode::RENDER_PASS_PRESTREAM) {
loadModel();
if(m_models.size() > 0) {
// Don't render meshes on second pass of the deferred lighting renderer, as only lights will be applied
/*
float lod_coverage = 0.0f;
if(m_models.size() > 1) {
lod_coverage = viewport.coverage(getBounds()); // This also checks the view frustrum culling
} else if(viewport.visible(getBounds())) {
lod_coverage = 1.0f;
}
*/
float lod_coverage = viewport.coverage(getBounds()); // This also checks the view frustrum culling
if(lod_coverage > m_min_lod_coverage) {
// ---===--- Select the best LOD model based on screen coverage ---===---
std::vector<KRMesh *>::iterator itr=m_models.begin();
KRMesh *pModel = *itr++;
while(itr != m_models.end()) {
KRMesh *pLODModel = *itr++;
if((float)pLODModel->getLODCoverage() / 100.0f > lod_coverage && pLODModel->getLODCoverage() < pModel->getLODCoverage()) {
pModel = pLODModel;
} else {
break;
}
}
if(m_pLightMap == NULL && m_lightMap.size()) {
m_pLightMap = getContext().getTextureManager()->getTexture(m_lightMap);
}
if(m_pLightMap && pCamera->settings.bEnableLightMap && renderPass != RENDER_PASS_SHADOWMAP && renderPass != RENDER_PASS_GENERATE_SHADOWMAPS) {
m_pContext->getTextureManager()->selectTexture(5, m_pLightMap, lod_coverage, KRTexture::TEXTURE_USAGE_LIGHT_MAP);
}
KRMat4 matModel = getModelMatrix();
if(m_faces_camera) {
KRVector3 model_center = KRMat4::Dot(matModel, KRVector3::Zero());
KRVector3 camera_pos = viewport.getCameraPosition();
matModel = KRQuaternion(KRVector3::Forward(), KRVector3::Normalize(camera_pos - model_center)).rotationMatrix() * matModel;
}
pModel->render(getName(), pCamera, point_lights, directional_lights, spot_lights, viewport, matModel, m_pLightMap, renderPass, m_bones[pModel], m_rim_color, m_rim_power, lod_coverage);
}
}
}
}
void KRModel::preStream(const KRViewport &viewport)
{
loadModel();
float lod_coverage = viewport.coverage(getBounds());
for(auto itr = m_models.begin(); itr != m_models.end(); itr++) {
(*itr)->preStream(lod_coverage);
}
if(m_pLightMap == NULL && m_lightMap.size()) {
m_pLightMap = getContext().getTextureManager()->getTexture(m_lightMap);
}
if(m_pLightMap) {
m_pLightMap->resetPoolExpiry(lod_coverage, KRTexture::TEXTURE_USAGE_LIGHT_MAP);
}
}
kraken_stream_level KRModel::getStreamLevel(const KRViewport &viewport)
{
kraken_stream_level stream_level = KRNode::getStreamLevel(viewport);
loadModel();
for(auto itr = m_models.begin(); itr != m_models.end(); itr++) {
stream_level = KRMIN(stream_level, (*itr)->getStreamLevel());
}
return stream_level;
}
KRAABB KRModel::getBounds() {
loadModel();
if(m_models.size() > 0) {
if(m_faces_camera) {
KRAABB normal_bounds = KRAABB(m_models[0]->getMinPoint(), m_models[0]->getMaxPoint(), getModelMatrix());
float max_dimension = normal_bounds.longest_radius();
return KRAABB(normal_bounds.center()-KRVector3(max_dimension), normal_bounds.center() + KRVector3(max_dimension));
} else {
if(!(m_boundsCachedMat == getModelMatrix())) {
m_boundsCachedMat = getModelMatrix();
m_boundsCached = KRAABB(m_models[0]->getMinPoint(), m_models[0]->getMaxPoint(), getModelMatrix());
}
return m_boundsCached;
}
} else {
return KRAABB::Infinite();
}
}