447 lines
10 KiB
C++
Executable File
447 lines
10 KiB
C++
Executable File
//
|
|
// KRVector3.cpp
|
|
// KREngine
|
|
//
|
|
// Copyright 2012 Kearwood Gilbert. All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other materials
|
|
// provided with the distribution.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// The views and conclusions contained in the software and documentation are those of the
|
|
// authors and should not be interpreted as representing official policies, either expressed
|
|
// or implied, of Kearwood Gilbert.
|
|
//
|
|
|
|
#include "KREngine-common.h"
|
|
#include "KRVector3.h"
|
|
|
|
const KRVector3 KRVECTOR3_ZERO(0.0f, 0.0f, 0.0f);
|
|
|
|
//default constructor
|
|
KRVector3::KRVector3()
|
|
{
|
|
x = 0.0f;
|
|
y = 0.0f;
|
|
z = 0.0f;
|
|
}
|
|
|
|
KRVector3::KRVector3(const KRVector3 &v) {
|
|
x = v.x;
|
|
y = v.y;
|
|
z = v.z;
|
|
}
|
|
|
|
KRVector3::KRVector3(const KRVector4 &v) {
|
|
x = v.x;
|
|
y = v.y;
|
|
z = v.z;
|
|
}
|
|
|
|
KRVector3::KRVector3(float *v) {
|
|
x = v[0];
|
|
y = v[1];
|
|
z = v[2];
|
|
}
|
|
|
|
KRVector3::KRVector3(double *v) {
|
|
x = (float)v[0];
|
|
y = (float)v[1];
|
|
z = (float)v[2];
|
|
}
|
|
|
|
KRVector2 KRVector3::xx() const
|
|
{
|
|
return KRVector2(x,x);
|
|
}
|
|
|
|
KRVector2 KRVector3::xy() const
|
|
{
|
|
return KRVector2(x,y);
|
|
}
|
|
|
|
KRVector2 KRVector3::xz() const
|
|
{
|
|
return KRVector2(x,z);
|
|
}
|
|
|
|
KRVector2 KRVector3::yx() const
|
|
{
|
|
return KRVector2(y,x);
|
|
}
|
|
|
|
KRVector2 KRVector3::yy() const
|
|
{
|
|
return KRVector2(y,y);
|
|
}
|
|
|
|
KRVector2 KRVector3::yz() const
|
|
{
|
|
return KRVector2(y,z);
|
|
}
|
|
|
|
KRVector2 KRVector3::zx() const
|
|
{
|
|
return KRVector2(z,x);
|
|
}
|
|
|
|
KRVector2 KRVector3::zy() const
|
|
{
|
|
return KRVector2(z,y);
|
|
}
|
|
|
|
KRVector2 KRVector3::zz() const
|
|
{
|
|
return KRVector2(z,z);
|
|
}
|
|
|
|
void KRVector3::xy(const KRVector2 &v)
|
|
{
|
|
x = v.x;
|
|
y = v.y;
|
|
}
|
|
|
|
void KRVector3::xz(const KRVector2 &v)
|
|
{
|
|
x = v.x;
|
|
z = v.y;
|
|
}
|
|
|
|
void KRVector3::yx(const KRVector2 &v)
|
|
{
|
|
y = v.x;
|
|
x = v.y;
|
|
}
|
|
|
|
void KRVector3::yz(const KRVector2 &v)
|
|
{
|
|
y = v.x;
|
|
z = v.y;
|
|
}
|
|
|
|
void KRVector3::zx(const KRVector2 &v)
|
|
{
|
|
z = v.x;
|
|
x = v.y;
|
|
}
|
|
|
|
void KRVector3::zy(const KRVector2 &v)
|
|
{
|
|
z = v.x;
|
|
y = v.y;
|
|
}
|
|
|
|
KRVector3 KRVector3::Min() {
|
|
return KRVector3(-std::numeric_limits<float>::max());
|
|
}
|
|
|
|
KRVector3 KRVector3::Max() {
|
|
return KRVector3(std::numeric_limits<float>::max());
|
|
}
|
|
|
|
const KRVector3 &KRVector3::Zero() {
|
|
return KRVECTOR3_ZERO;
|
|
}
|
|
|
|
KRVector3 KRVector3::One() {
|
|
return KRVector3(1.0f, 1.0f, 1.0f);
|
|
}
|
|
|
|
KRVector3 KRVector3::Forward() {
|
|
return KRVector3(0.0f, 0.0f, 1.0f);
|
|
}
|
|
|
|
KRVector3 KRVector3::Backward() {
|
|
return KRVector3(0.0f, 0.0f, -1.0f);
|
|
}
|
|
|
|
KRVector3 KRVector3::Up() {
|
|
return KRVector3(0.0f, 1.0f, 0.0f);
|
|
}
|
|
|
|
KRVector3 KRVector3::Down() {
|
|
return KRVector3(0.0f, -1.0f, 0.0f);
|
|
}
|
|
|
|
KRVector3 KRVector3::Left() {
|
|
return KRVector3(-1.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
KRVector3 KRVector3::Right() {
|
|
return KRVector3(1.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
|
|
void KRVector3::scale(const KRVector3 &v)
|
|
{
|
|
x *= v.x;
|
|
y *= v.y;
|
|
z *= v.z;
|
|
}
|
|
|
|
KRVector3 KRVector3::Scale(const KRVector3 &v1, const KRVector3 &v2)
|
|
{
|
|
return KRVector3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z);
|
|
}
|
|
|
|
KRVector3 KRVector3::Lerp(const KRVector3 &v1, const KRVector3 &v2, float d) {
|
|
return v1 + (v2 - v1) * d;
|
|
}
|
|
|
|
KRVector3 KRVector3::Slerp(const KRVector3 &v1, const KRVector3 &v2, float d) {
|
|
// From: http://keithmaggio.wordpress.com/2011/02/15/math-magician-lerp-slerp-and-nlerp/
|
|
// Dot product - the cosine of the angle between 2 vectors.
|
|
float dot = KRVector3::Dot(v1, v2);
|
|
// Clamp it to be in the range of Acos()
|
|
if(dot < -1.0f) dot = -1.0f;
|
|
if(dot > 1.0f) dot = 1.0f;
|
|
// Acos(dot) returns the angle between start and end,
|
|
// And multiplying that by percent returns the angle between
|
|
// start and the final result.
|
|
float theta = acos(dot)*d;
|
|
KRVector3 RelativeVec = v2 - v1*dot;
|
|
RelativeVec.normalize(); // Orthonormal basis
|
|
// The final result.
|
|
return ((v1*cos(theta)) + (RelativeVec*sin(theta)));
|
|
}
|
|
|
|
void KRVector3::OrthoNormalize(KRVector3 &normal, KRVector3 &tangent) {
|
|
// Gram-Schmidt Orthonormalization
|
|
normal.normalize();
|
|
KRVector3 proj = normal * Dot(tangent, normal);
|
|
tangent = tangent - proj;
|
|
tangent.normalize();
|
|
}
|
|
|
|
KRVector3::KRVector3(float v) {
|
|
x = v;
|
|
y = v;
|
|
z = v;
|
|
}
|
|
|
|
KRVector3::KRVector3(float X, float Y, float Z)
|
|
{
|
|
x = X;
|
|
y = Y;
|
|
z = Z;
|
|
}
|
|
|
|
KRVector3::~KRVector3()
|
|
{
|
|
}
|
|
|
|
KRVector3& KRVector3::operator =(const KRVector3& b) {
|
|
x = b.x;
|
|
y = b.y;
|
|
z = b.z;
|
|
return *this;
|
|
}
|
|
|
|
KRVector3& KRVector3::operator =(const KRVector4 &b) {
|
|
x = b.x;
|
|
y = b.y;
|
|
z = b.z;
|
|
return *this;
|
|
}
|
|
|
|
KRVector3 KRVector3::operator +(const KRVector3& b) const {
|
|
return KRVector3(x + b.x, y + b.y, z + b.z);
|
|
}
|
|
KRVector3 KRVector3::operator -(const KRVector3& b) const {
|
|
return KRVector3(x - b.x, y - b.y, z - b.z);
|
|
}
|
|
KRVector3 KRVector3::operator +() const {
|
|
return *this;
|
|
}
|
|
KRVector3 KRVector3::operator -() const {
|
|
return KRVector3(-x, -y, -z);
|
|
}
|
|
|
|
KRVector3 KRVector3::operator *(const float v) const {
|
|
return KRVector3(x * v, y * v, z * v);
|
|
}
|
|
|
|
KRVector3 KRVector3::operator /(const float v) const {
|
|
float inv_v = 1.0f / v;
|
|
return KRVector3(x * inv_v, y * inv_v, z * inv_v);
|
|
}
|
|
|
|
KRVector3& KRVector3::operator +=(const KRVector3& b) {
|
|
x += b.x;
|
|
y += b.y;
|
|
z += b.z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
KRVector3& KRVector3::operator -=(const KRVector3& b) {
|
|
x -= b.x;
|
|
y -= b.y;
|
|
z -= b.z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
KRVector3& KRVector3::operator *=(const float v) {
|
|
x *= v;
|
|
y *= v;
|
|
z *= v;
|
|
|
|
return *this;
|
|
}
|
|
|
|
KRVector3& KRVector3::operator /=(const float v) {
|
|
float inv_v = 1.0f / v;
|
|
x *= inv_v;
|
|
y *= inv_v;
|
|
z *= inv_v;
|
|
|
|
return *this;
|
|
}
|
|
|
|
bool KRVector3::operator ==(const KRVector3& b) const {
|
|
return x == b.x && y == b.y && z == b.z;
|
|
|
|
}
|
|
bool KRVector3::operator !=(const KRVector3& b) const {
|
|
return x != b.x || y != b.y || z != b.z;
|
|
}
|
|
|
|
float& KRVector3::operator[](unsigned i) {
|
|
switch(i) {
|
|
case 0:
|
|
return x;
|
|
case 1:
|
|
return y;
|
|
default:
|
|
case 2:
|
|
return z;
|
|
}
|
|
}
|
|
|
|
float KRVector3::operator[](unsigned i) const {
|
|
switch(i) {
|
|
case 0:
|
|
return x;
|
|
case 1:
|
|
return y;
|
|
case 2:
|
|
default:
|
|
return z;
|
|
}
|
|
}
|
|
|
|
float KRVector3::sqrMagnitude() const {
|
|
// calculate the square of the magnitude (useful for comparison of magnitudes without the cost of a sqrt() function)
|
|
return x * x + y * y + z * z;
|
|
}
|
|
|
|
float KRVector3::magnitude() const {
|
|
return sqrtf(x * x + y * y + z * z);
|
|
}
|
|
|
|
void KRVector3::normalize() {
|
|
float inv_magnitude = 1.0f / sqrtf(x * x + y * y + z * z);
|
|
x *= inv_magnitude;
|
|
y *= inv_magnitude;
|
|
z *= inv_magnitude;
|
|
}
|
|
KRVector3 KRVector3::Normalize(const KRVector3 &v) {
|
|
float inv_magnitude = 1.0f / sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
|
|
return KRVector3(v.x * inv_magnitude, v.y * inv_magnitude, v.z * inv_magnitude);
|
|
}
|
|
|
|
KRVector3 KRVector3::Cross(const KRVector3 &v1, const KRVector3 &v2) {
|
|
return KRVector3(v1.y * v2.z - v1.z * v2.y,
|
|
v1.z * v2.x - v1.x * v2.z,
|
|
v1.x * v2.y - v1.y * v2.x);
|
|
}
|
|
|
|
float KRVector3::Dot(const KRVector3 &v1, const KRVector3 &v2) {
|
|
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
|
|
}
|
|
|
|
bool KRVector3::operator >(const KRVector3& b) const
|
|
{
|
|
// Comparison operators are implemented to allow insertion into sorted containers such as std::set
|
|
if(x > b.x) {
|
|
return true;
|
|
} else if(x < b.x) {
|
|
return false;
|
|
} else if(y > b.y) {
|
|
return true;
|
|
} else if(y < b.y) {
|
|
return false;
|
|
} else if(z > b.z) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool KRVector3::operator <(const KRVector3& b) const
|
|
{
|
|
// Comparison operators are implemented to allow insertion into sorted containers such as std::set
|
|
if(x < b.x) {
|
|
return true;
|
|
} else if(x > b.x) {
|
|
return false;
|
|
} else if(y < b.y) {
|
|
return true;
|
|
} else if(y > b.y) {
|
|
return false;
|
|
} else if(z < b.z) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void KRVector3::setUniform(GLint location) const
|
|
{
|
|
if(location != -1) GLDEBUG(glUniform3f(location, x, y, z));
|
|
}
|
|
|
|
void KRVector3::setXMLAttribute(const std::string &base_name, tinyxml2::XMLElement *e, const KRVector3 &default_value)
|
|
{
|
|
// TODO - Increase number of digits after the decimal in floating point format (6 -> 12?)
|
|
// FINDME, TODO - This needs optimization...
|
|
if(*this != default_value) {
|
|
e->SetAttribute((base_name + "_x").c_str(), x);
|
|
e->SetAttribute((base_name + "_y").c_str(), y);
|
|
e->SetAttribute((base_name + "_z").c_str(), z);
|
|
}
|
|
}
|
|
|
|
void KRVector3::getXMLAttribute(const std::string &base_name, tinyxml2::XMLElement *e, const KRVector3 &default_value)
|
|
{
|
|
float new_x = 0.0f;
|
|
float new_y = 0.0f;
|
|
float new_z = 0.0f;
|
|
if(e->QueryFloatAttribute((base_name + "_x").c_str(), &new_x) == tinyxml2::XML_SUCCESS
|
|
&& e->QueryFloatAttribute((base_name + "_y").c_str(), &new_y) == tinyxml2::XML_SUCCESS
|
|
&& e->QueryFloatAttribute((base_name + "_z").c_str(), &new_z) == tinyxml2::XML_SUCCESS) {
|
|
x = new_x;
|
|
y = new_y;
|
|
z = new_z;
|
|
} else {
|
|
*this = default_value;
|
|
}
|
|
}
|