Files
kraken/KREngine/KREngine/Classes/KRDirectionalLight.cpp
kearwood 4f5fd10e71 Updated krmodel file format to support bone weights, physics collider meshes, and variable combinations of vertex attributes
--HG--
extra : convert_revision : svn%3A7752d6cf-9f14-4ad2-affc-04f1e67b81a5/trunk%40183
2012-12-10 21:09:14 +00:00

144 lines
6.5 KiB
C++

//
// KRDirectionalLight.cpp
// KREngine
//
// Created by Kearwood Gilbert on 12-04-05.
// Copyright (c) 2012 Kearwood Software. All rights reserved.
//
#include <iostream>
#import "KRDirectionalLight.h"
#import "KRShader.h"
#import "KRContext.h"
#import "KRMat4.h"
#import "assert.h"
#import "KRStockGeometry.h"
KRDirectionalLight::KRDirectionalLight(KRScene &scene, std::string name) : KRLight(scene, name)
{
}
KRDirectionalLight::~KRDirectionalLight()
{
}
std::string KRDirectionalLight::getElementName() {
return "directional_light";
}
KRVector3 KRDirectionalLight::getWorldLightDirection() {
const GLfloat PI = 3.14159265;
const GLfloat d2r = PI * 2 / 360;
KRVector3 world_rotation = getLocalRotation();
KRVector3 light_rotation = KRVector3(0.0, 0.0, -1.0);
KRMat4 m;
m.rotate(world_rotation.x, X_AXIS);
m.rotate(world_rotation.y, Y_AXIS);
m.rotate(world_rotation.z, X_AXIS);
m.rotate(-90.0 * d2r, Y_AXIS);
KRVector3 light_direction = KRMat4::Dot(m, light_rotation);
return light_direction;
}
KRVector3 KRDirectionalLight::getLocalLightDirection() {
return KRVector3(0.0, 0.0, 1.0);
}
int KRDirectionalLight::configureShadowBufferViewports(const KRViewport &viewport) {
const float KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE = 1.25f; // Scale to apply to view frustrum bounds so that we don't need to refresh shadows on every frame
int cShadows = 1;
for(int iShadow=0; iShadow < cShadows; iShadow++) {
GLfloat shadowMinDepths[3][3] = {{0.0, 0.0, 0.0},{0.0, 0.0, 0.0},{0.0, 0.05, 0.3}};
GLfloat shadowMaxDepths[3][3] = {{0.0, 0.0, 1.0},{0.1, 0.0, 0.0},{0.1, 0.3, 1.0}};
float min_depth = 0.0f;
float max_depth = 1.0f;
KRAABB worldSpacefrustrumSliceBounds = KRAABB(KRVector3(-1.0f, -1.0f, -1.0f), KRVector3(1.0f, 1.0f, 1.0f), KRMat4::Invert(viewport.getViewProjectionMatrix()));
worldSpacefrustrumSliceBounds.scale(KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE);
KRVector3 shadowLook = -KRVector3::Normalize(getWorldLightDirection());
KRVector3 shadowUp(0.0, 1.0, 0.0);
if(KRVector3::Dot(shadowUp, shadowLook) > 0.99f) shadowUp = KRVector3(0.0, 0.0, 1.0); // Ensure shadow look direction is not parallel with the shadowUp direction
// KRMat4 matShadowView = KRMat4::LookAt(viewport.getCameraPosition() - shadowLook, viewport.getCameraPosition(), shadowUp);
// KRMat4 matShadowProjection = KRMat4();
// matShadowProjection.scale(0.001, 0.001, 0.001);
KRMat4 matShadowView = KRMat4::LookAt(worldSpacefrustrumSliceBounds.center() - shadowLook, worldSpacefrustrumSliceBounds.center(), shadowUp);
KRMat4 matShadowProjection = KRMat4();
KRAABB shadowSpaceFrustrumSliceBounds = KRAABB(worldSpacefrustrumSliceBounds.min, worldSpacefrustrumSliceBounds.max, KRMat4::Invert(matShadowProjection));
KRAABB shadowSpaceSceneBounds = KRAABB(getScene().getRootOctreeBounds().min, getScene().getRootOctreeBounds().max, KRMat4::Invert(matShadowProjection));
if(shadowSpaceSceneBounds.min.z < shadowSpaceFrustrumSliceBounds.min.z) shadowSpaceFrustrumSliceBounds.min.z = shadowSpaceSceneBounds.min.z; // Include any potential shadow casters that are outside the view frustrum
matShadowProjection.scale(1.0f / shadowSpaceFrustrumSliceBounds.size().x, 1.0f / shadowSpaceFrustrumSliceBounds.size().y, 1.0f / shadowSpaceFrustrumSliceBounds.size().z);
KRMat4 matBias;
matBias.bias();
matShadowProjection *= matBias;
KRViewport newShadowViewport = KRViewport(KRVector2(KRENGINE_SHADOW_MAP_WIDTH, KRENGINE_SHADOW_MAP_HEIGHT), matShadowView, matShadowProjection);
KRAABB prevShadowBounds = KRAABB(-KRVector3::One(), KRVector3::One(), KRMat4::Invert(m_shadowViewports[iShadow].getViewProjectionMatrix()));
KRAABB minimumShadowBounds = KRAABB(-KRVector3::One(), KRVector3::One(), KRMat4::Invert(newShadowViewport.getViewProjectionMatrix()));
minimumShadowBounds.scale(1.0f / KRENGINE_SHADOW_BOUNDS_EXTRA_SCALE);
if(!prevShadowBounds.contains(minimumShadowBounds) || !shadowValid[iShadow]) {
m_shadowViewports[iShadow] = newShadowViewport;
shadowValid[iShadow] = false;
fprintf(stderr, "Kraken - Generate shadow maps...\n");
}
}
return 1;
}
#if TARGET_OS_IPHONE
void KRDirectionalLight::render(KRCamera *pCamera, std::vector<KRLight *> &lights, const KRViewport &viewport, KRNode::RenderPass renderPass) {
KRLight::render(pCamera, lights, viewport, renderPass);
if(renderPass == KRNode::RENDER_PASS_DEFERRED_LIGHTS) {
// Lights are rendered on the second pass of the deferred renderer
std::vector<KRLight *> this_light;
this_light.push_back(this);
KRMat4 matModelViewInverseTranspose = viewport.getViewMatrix() * getModelMatrix();
matModelViewInverseTranspose.transpose();
matModelViewInverseTranspose.invert();
KRVector3 light_direction_view_space = getWorldLightDirection();
light_direction_view_space = KRMat4::Dot(matModelViewInverseTranspose, light_direction_view_space);
light_direction_view_space.normalize();
KRShader *pShader = getContext().getShaderManager()->getShader("light_directional", pCamera, this_light, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, renderPass);
if(getContext().getShaderManager()->selectShader(*pCamera, pShader, viewport, getModelMatrix(), this_light, renderPass)) {
light_direction_view_space.setUniform(pShader->m_uniforms[KRShader::KRENGINE_UNIFORM_LIGHT_DIRECTION_VIEW_SPACE]);
m_color.setUniform(pShader->m_uniforms[KRShader::KRENGINE_UNIFORM_LIGHT_COLOR]);
GLDEBUG(glUniform1f(
pShader->m_uniforms[KRShader::KRENGINE_UNIFORM_LIGHT_INTENSITY],
m_intensity / 100.0f
));
// Disable z-buffer write
GLDEBUG(glDepthMask(GL_FALSE));
// Disable z-buffer test
GLDEBUG(glDisable(GL_DEPTH_TEST));
// Render a full screen quad
m_pContext->getModelManager()->bindVBO((void *)KRENGINE_VBO_2D_SQUARE, KRENGINE_VBO_2D_SQUARE_SIZE, true, false, false, true, false, false, false);
GLDEBUG(glDrawArrays(GL_TRIANGLE_STRIP, 0, 4));
}
}
}
#endif