Files
kraken/KREngine/KREngine/Classes/KRLight.cpp
kearwood 4f5fd10e71 Updated krmodel file format to support bone weights, physics collider meshes, and variable combinations of vertex attributes
--HG--
extra : convert_revision : svn%3A7752d6cf-9f14-4ad2-affc-04f1e67b81a5/trunk%40183
2012-12-10 21:09:14 +00:00

406 lines
16 KiB
C++

//
// KRLight.cpp
// KREngine
//
// Created by Kearwood Gilbert on 12-04-05.
// Copyright (c) 2012 Kearwood Software. All rights reserved.
//
#include <iostream>
#import "KRLight.h"
#import "KRNode.h"
#import "KRMat4.h"
#import "KRVector3.h"
#import "KRCamera.h"
#import "KRContext.h"
#import "KRShaderManager.h"
#import "KRShader.h"
#import "KRStockGeometry.h"
#import "assert.h"
KRLight::KRLight(KRScene &scene, std::string name) : KRNode(scene, name)
{
m_intensity = 1.0f;
m_dust_particle_intensity = 1.0f;
m_color = KRVector3::One();
m_flareTexture = "";
m_pFlareTexture = NULL;
m_flareSize = 0.0;
m_casts_shadow = true;
m_light_shafts = true;
m_dust_particle_density = 0.1f;
m_dust_particle_size = 1.0f;
// Initialize shadow buffers
m_cShadowBuffers = 0;
for(int iBuffer=0; iBuffer < KRENGINE_MAX_SHADOW_BUFFERS; iBuffer++) {
shadowFramebuffer[iBuffer] = 0;
shadowDepthTexture[iBuffer] = 0;
shadowValid[iBuffer] = false;
}
}
KRLight::~KRLight()
{
allocateShadowBuffers(0);
}
tinyxml2::XMLElement *KRLight::saveXML( tinyxml2::XMLNode *parent)
{
tinyxml2::XMLElement *e = KRNode::saveXML(parent);
e->SetAttribute("intensity", m_intensity);
e->SetAttribute("color_r", m_color.x);
e->SetAttribute("color_g", m_color.y);
e->SetAttribute("color_b", m_color.z);
e->SetAttribute("decay_start", m_decayStart);
e->SetAttribute("flare_size", m_flareSize);
e->SetAttribute("flare_texture", m_flareTexture.c_str());
e->SetAttribute("casts_shadow", m_casts_shadow ? "true" : "false");
e->SetAttribute("light_shafts", m_light_shafts ? "true" : "false");
e->SetAttribute("dust_particle_density", m_dust_particle_density);
e->SetAttribute("dust_particle_size", m_dust_particle_size);
e->SetAttribute("dust_particle_intensity", m_dust_particle_intensity);
return e;
}
void KRLight::loadXML(tinyxml2::XMLElement *e) {
KRNode::loadXML(e);
float x=1.0f,y=1.0f,z=1.0f;
if(e->QueryFloatAttribute("color_r", &x) != tinyxml2::XML_SUCCESS) {
x = 1.0;
}
if(e->QueryFloatAttribute("color_g", &y) != tinyxml2::XML_SUCCESS) {
y = 1.0;
}
if(e->QueryFloatAttribute("color_b", &z) != tinyxml2::XML_SUCCESS) {
z = 1.0;
}
m_color = KRVector3(x,y,z);
if(e->QueryFloatAttribute("intensity", &m_intensity) != tinyxml2::XML_SUCCESS) {
m_intensity = 100.0;
}
if(e->QueryFloatAttribute("decay_start", &m_decayStart) != tinyxml2::XML_SUCCESS) {
m_decayStart = 0.0;
}
if(e->QueryFloatAttribute("flare_size", &m_flareSize) != tinyxml2::XML_SUCCESS) {
m_flareSize = 0.0;
}
if(e->QueryBoolAttribute("casts_shadow", &m_casts_shadow) != tinyxml2::XML_SUCCESS) {
m_casts_shadow = true;
}
if(e->QueryBoolAttribute("light_shafts", &m_light_shafts) != tinyxml2::XML_SUCCESS) {
m_light_shafts = true;
}
m_dust_particle_density = 0.1f;
if(e->QueryFloatAttribute("dust_particle_density", &m_dust_particle_density) != tinyxml2::XML_SUCCESS) {
m_dust_particle_density = 0.1f;
}
m_dust_particle_size = 1.0f;
if(e->QueryFloatAttribute("dust_particle_size", &m_dust_particle_size) != tinyxml2::XML_SUCCESS) {
m_dust_particle_size = 1.0f;
}
m_dust_particle_intensity = 1.0f;
if(e->QueryFloatAttribute("dust_particle_intensity", &m_dust_particle_intensity) != tinyxml2::XML_SUCCESS) {
m_dust_particle_intensity = 1.0f;
}
const char *szFlareTexture = e->Attribute("flare_texture");
if(szFlareTexture) {
m_flareTexture = szFlareTexture;
} else {
m_flareTexture = "";
}
m_pFlareTexture = NULL;
}
void KRLight::setFlareTexture(std::string flare_texture) {
m_flareTexture = flare_texture;
m_pFlareTexture = NULL;
}
void KRLight::setFlareSize(float flare_size) {
m_flareSize = flare_size;
}
void KRLight::setIntensity(float intensity) {
m_intensity = intensity;
}
float KRLight::getIntensity() {
return m_intensity;
}
const KRVector3 &KRLight::getColor() {
return m_color;
}
void KRLight::setColor(const KRVector3 &color) {
m_color = color;
}
void KRLight::setDecayStart(float decayStart) {
m_decayStart = decayStart;
}
float KRLight::getDecayStart() {
return m_decayStart;
}
#if TARGET_OS_IPHONE
void KRLight::render(KRCamera *pCamera, std::vector<KRLight *> &lights, const KRViewport &viewport, KRNode::RenderPass renderPass) {
KRNode::render(pCamera, lights, viewport, renderPass);
if(renderPass == KRNode::RENDER_PASS_GENERATE_SHADOWMAPS && (pCamera->volumetric_environment_enable || pCamera->dust_particle_enable || (pCamera->m_cShadowBuffers > 0 && m_casts_shadow))) {
allocateShadowBuffers(configureShadowBufferViewports(viewport));
renderShadowBuffers(pCamera);
}
if(renderPass == KRNode::RENDER_PASS_ADDITIVE_PARTICLES && pCamera->dust_particle_enable) {
// Render brownian particles for dust floating in air
if(m_cShadowBuffers >= 1 && shadowValid[0] && m_dust_particle_density > 0.0f && m_dust_particle_size > 0.0f && m_dust_particle_intensity > 0.0f) {
float lod_coverage = getBounds().coverage(viewport.getViewProjectionMatrix(), viewport.getSize()); // This also checks the view frustrum culling
if(lod_coverage > 0.0f || true) {
float particle_range = 600.0f;
int particle_count = m_dust_particle_density * pow(particle_range, 3);
if(particle_count > KRModelManager::KRENGINE_MAX_RANDOM_PARTICLES) particle_count = KRModelManager::KRENGINE_MAX_RANDOM_PARTICLES;
// Enable z-buffer test
GLDEBUG(glEnable(GL_DEPTH_TEST));
GLDEBUG(glDepthRangef(0.0, 1.0));
KRMat4 particleModelMatrix;
particleModelMatrix.scale(particle_range); // Scale the box symetrically to ensure that we don't have an uneven distribution of particles for different angles of the view frustrum
particleModelMatrix.translate(viewport.getCameraPosition());
std::vector<KRLight *> this_light;
this_light.push_back(this);
KRShader *pParticleShader = m_pContext->getShaderManager()->getShader("dust_particle", pCamera, this_light, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, renderPass);
if(getContext().getShaderManager()->selectShader(*pCamera, pParticleShader, viewport, particleModelMatrix, this_light, renderPass)) {
(m_color * pCamera->dust_particle_intensity * m_dust_particle_intensity * m_intensity).setUniform(pParticleShader->m_uniforms[KRShader::KRENGINE_UNIFORM_LIGHT_COLOR]);
KRMat4::DotWDiv(KRMat4::Invert(particleModelMatrix), KRVector3::Zero()).setUniform(pParticleShader->m_uniforms[KRShader::KRENGINE_UNIFORM_PARTICLE_ORIGIN]);
GLDEBUG(glUniform1f(pParticleShader->m_uniforms[KRShader::KRENGINE_UNIFORM_FLARE_SIZE], m_dust_particle_size));
m_pContext->getModelManager()->bindVBO((void *)m_pContext->getModelManager()->getRandomParticles(), KRModelManager::KRENGINE_MAX_RANDOM_PARTICLES * 3 * sizeof(KRModelManager::RandomParticleVertexData), true, false, false, true, false, false, false);
GLDEBUG(glDrawArrays(GL_TRIANGLES, 0, particle_count*3));
}
}
}
}
if(renderPass == KRNode::RENDER_PASS_VOLUMETRIC_EFFECTS_ADDITIVE && pCamera->volumetric_environment_enable && m_light_shafts) {
std::string shader_name = pCamera->volumetric_environment_downsample != 0 ? "volumetric_fog_downsampled" : "volumetric_fog";
std::vector<KRLight *> this_light;
this_light.push_back(this);
KRShader *pFogShader = m_pContext->getShaderManager()->getShader(shader_name, pCamera, this_light, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, KRNode::RENDER_PASS_ADDITIVE_PARTICLES);
if(getContext().getShaderManager()->selectShader(*pCamera, pFogShader, viewport, KRMat4(), this_light, KRNode::RENDER_PASS_VOLUMETRIC_EFFECTS_ADDITIVE)) {
int slice_count = (int)(pCamera->volumetric_environment_quality * 495.0) + 5;
float slice_near = -pCamera->getPerspectiveNearZ();
float slice_far = -pCamera->volumetric_environment_max_distance;
float slice_spacing = (slice_far - slice_near) / slice_count;
KRVector2(slice_near, slice_spacing).setUniform(pFogShader->m_uniforms[KRShader::KRENGINE_UNIFORM_SLICE_DEPTH_SCALE]);
(m_color * pCamera->volumetric_environment_intensity * m_intensity * -slice_spacing / 1000.0f).setUniform(pFogShader->m_uniforms[KRShader::KRENGINE_UNIFORM_LIGHT_COLOR]);
m_pContext->getModelManager()->bindVBO((void *)m_pContext->getModelManager()->getVolumetricLightingVertexes(), KRModelManager::KRENGINE_MAX_VOLUMETRIC_PLANES * 6 * sizeof(KRModelManager::VolumetricLightingVertexData), true, false, false, false, false, false, false);
GLDEBUG(glDrawArrays(GL_TRIANGLES, 0, slice_count*6));
}
}
if(renderPass == KRNode::RENDER_PASS_ADDITIVE_PARTICLES) {
if(m_flareTexture.size() && m_flareSize > 0.0f) {
if(!m_pFlareTexture && m_flareTexture.size()) {
m_pFlareTexture = getContext().getTextureManager()->getTexture(m_flareTexture.c_str());
}
if(m_pFlareTexture) {
// Disable z-buffer test
GLDEBUG(glDisable(GL_DEPTH_TEST));
GLDEBUG(glDepthRangef(0.0, 1.0));
// Render light flare on transparency pass
KRShader *pShader = getContext().getShaderManager()->getShader("flare", pCamera, lights, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, renderPass);
if(getContext().getShaderManager()->selectShader(*pCamera, pShader, viewport, getModelMatrix(), lights, renderPass)) {
GLDEBUG(glUniform1f(
pShader->m_uniforms[KRShader::KRENGINE_UNIFORM_FLARE_SIZE],
m_flareSize
));
m_pContext->getTextureManager()->selectTexture(0, m_pFlareTexture);
m_pContext->getModelManager()->bindVBO((void *)KRENGINE_VBO_2D_SQUARE, KRENGINE_VBO_2D_SQUARE_SIZE, true, false, false, true, false, false, false);
GLDEBUG(glDrawArrays(GL_TRIANGLE_STRIP, 0, 4));
}
}
}
}
}
#endif
void KRLight::allocateShadowBuffers(int cBuffers) {
#if TARGET_OS_IPHONE
// First deallocate buffers no longer needed
for(int iShadow = cBuffers; iShadow < KRENGINE_MAX_SHADOW_BUFFERS; iShadow++) {
if (shadowDepthTexture[iShadow]) {
GLDEBUG(glDeleteTextures(1, shadowDepthTexture + iShadow));
shadowDepthTexture[iShadow] = 0;
}
if (shadowFramebuffer[iShadow]) {
GLDEBUG(glDeleteFramebuffers(1, shadowFramebuffer + iShadow));
shadowFramebuffer[iShadow] = 0;
}
}
// Allocate newly required buffers
for(int iShadow = 0; iShadow < cBuffers; iShadow++) {
KRVector2 viewportSize = m_shadowViewports[iShadow].getSize();
if(!shadowDepthTexture[iShadow]) {
shadowValid[iShadow] = false;
GLDEBUG(glGenFramebuffers(1, shadowFramebuffer + iShadow));
GLDEBUG(glGenTextures(1, shadowDepthTexture + iShadow));
// ===== Create offscreen shadow framebuffer object =====
GLDEBUG(glBindFramebuffer(GL_FRAMEBUFFER, shadowFramebuffer[iShadow]));
// ----- Create Depth Texture for shadowFramebuffer -----
GLDEBUG( glBindTexture(GL_TEXTURE_2D, shadowDepthTexture[iShadow]));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
#if GL_EXT_shadow_samplers
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE_EXT, GL_COMPARE_REF_TO_TEXTURE_EXT)); // TODO - Detect GL_EXT_shadow_samplers and only activate if available
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC_EXT, GL_LEQUAL)); // TODO - Detect GL_EXT_shadow_samplers and only activate if available
#endif
GLDEBUG(glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, viewportSize.x, viewportSize.y, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL));
GLDEBUG(glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadowDepthTexture[iShadow], 0));
}
}
m_cShadowBuffers = cBuffers;
#endif
}
void KRLight::deleteBuffers()
{
// Called when this light wasn't used in the last frame, so we can free the resources for use by other lights
allocateShadowBuffers(0);
}
void KRLight::invalidateShadowBuffers()
{
for(int iShadow=0; iShadow < m_cShadowBuffers; iShadow++) {
shadowValid[iShadow] = false;
}
}
int KRLight::configureShadowBufferViewports(const KRViewport &viewport)
{
return 0;
}
void KRLight::renderShadowBuffers(KRCamera *pCamera)
{
#if TARGET_OS_IPHONE
for(int iShadow=0; iShadow < m_cShadowBuffers; iShadow++) {
if(!shadowValid[iShadow]) {
shadowValid[iShadow] = true;
GLDEBUG(glBindFramebuffer(GL_FRAMEBUFFER, shadowFramebuffer[iShadow]));
GLDEBUG(glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadowDepthTexture[iShadow], 0));
GLDEBUG(glViewport(0, 0, m_shadowViewports[iShadow].getSize().x, m_shadowViewports[iShadow].getSize().y));
GLDEBUG(glClearDepthf(0.0f));
GLDEBUG(glClear(GL_DEPTH_BUFFER_BIT));
GLDEBUG(glViewport(1, 1, m_shadowViewports[iShadow].getSize().x - 2, m_shadowViewports[iShadow].getSize().y - 2));
GLDEBUG(glClearDepthf(1.0f));
GLDEBUG(glClear(GL_DEPTH_BUFFER_BIT));
GLDEBUG(glDisable(GL_DITHER));
GLDEBUG(glCullFace(GL_BACK)); // Enable frontface culling, which eliminates some self-cast shadow artifacts
GLDEBUG(glEnable(GL_CULL_FACE));
// Enable z-buffer test
GLDEBUG(glEnable(GL_DEPTH_TEST));
GLDEBUG(glDepthFunc(GL_LESS));
GLDEBUG(glDepthRangef(0.0, 1.0));
// Disable alpha blending as we are using alpha channel for packed depth info
GLDEBUG(glDisable(GL_BLEND));
// Use shader program
KRShader *shadowShader = m_pContext->getShaderManager()->getShader("ShadowShader", pCamera, std::vector<KRLight *>(), false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, KRNode::RENDER_PASS_FORWARD_TRANSPARENT);
getContext().getShaderManager()->selectShader(*pCamera, shadowShader, m_shadowViewports[iShadow], KRMat4(), std::vector<KRLight *>(), KRNode::RENDER_PASS_SHADOWMAP);
getScene().render(pCamera, m_shadowViewports[iShadow].getVisibleBounds(), m_shadowViewports[iShadow], KRNode::RENDER_PASS_SHADOWMAP, true);
}
}
#endif
}
int KRLight::getShadowBufferCount()
{
int cBuffers=0;
for(int iBuffer=0; iBuffer < m_cShadowBuffers; iBuffer++) {
if(shadowValid[iBuffer]) {
cBuffers++;
} else {
break;
}
}
return cBuffers;
}
GLuint *KRLight::getShadowTextures()
{
return shadowDepthTexture;
}
KRViewport *KRLight::getShadowViewports()
{
return m_shadowViewports;
}