Files
kraken/KREngine/kraken/KRAudioManager.h
Peter Courtemanche 516115f4d5 Updated the constants defined for the audio block size
--HG--
branch : nfb
2014-01-13 11:54:21 -08:00

251 lines
9.1 KiB
C++

//
// FileManager.h
// KREngine
//
// Copyright 2012 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#ifndef KRAUDIO_MANAGER_H
#define KRAUDIO_MANAGER_H
#include "KREngine-common.h"
#include "KRAudioSample.h"
#include "KRContextObject.h"
#include "KRDataBlock.h"
#include "KRMat4.h"
#include "KRAudioSource.h"
const int KRENGINE_AUDIO_MAX_POOL_SIZE = 32;
const int KRENGINE_AUDIO_MAX_BUFFER_SIZE = 64*1024;
const int KRENGINE_AUDIO_BUFFERS_PER_SOURCE = 3;
const int KRENGINE_AUDIO_BLOCK_LOG2N = 7; // 2 ^ KRENGINE_AUDIO_BLOCK_LOG2N = KRENGINE_AUDIO_BLOCK_LENGTH
// 7 is 128, 8 -> 256, 9 -> 512, 10 -> 1024 (the size of the hardware (AUgraph) framebuffer)
// NOTE: the hrtf code use magic numbers everywhere and is hardcoded to 128 samples per frame
const int KRENGINE_AUDIO_BLOCK_LENGTH = 1 << KRENGINE_AUDIO_BLOCK_LOG2N;
// Length of one block to process. Determines the latency of the audio system and sets size for FFT's used in HRTF convolution
// the AUGraph works in 1024 sample chunks. If we put a value of less then 1024 in here then we are making mutliple calls to our render functions without any
// improvement in latency and our audio render perfomance goes down significantly
const int KRENGINE_REVERB_MAX_FFT_LOG2 = 15;
const int KRENGINE_REVERB_WORKSPACE_SIZE = 1 << KRENGINE_REVERB_MAX_FFT_LOG2;
const float KRENGINE_AUDIO_CUTOFF = 0.02f; // Cutoff gain level, to cull out processing of very quiet sounds
const int KRENGINE_REVERB_MAX_SAMPLES = 435200; // At least 10s reverb impulse response length, divisible by KRENGINE_AUDIO_BLOCK_LENGTH
const int KRENGINE_MAX_REVERB_IMPULSE_MIX = 16; // Maximum number of impulse response filters that can be mixed simultaneously
const int KRENGINE_MAX_OUTPUT_CHANNELS = 2;
const int KRENGINE_MAX_ACTIVE_SOURCES = 24;
const int KRENGINE_AUDIO_ANTICLICK_SAMPLES = 64;
class KRAmbientZone;
class KRReverbZone;
typedef struct {
float weight;
KRAmbientZone *ambient_zone;
KRAudioSample *ambient_sample;
} siren_ambient_zone_weight_info;
typedef struct {
float weight;
KRReverbZone *reverb_zone;
KRAudioSample *reverb_sample;
} siren_reverb_zone_weight_info;
class KRAudioManager : public KRContextObject {
public:
KRAudioManager(KRContext &context);
virtual ~KRAudioManager();
unordered_map<std::string, KRAudioSample *> &getSounds();
void add(KRAudioSample *Sound);
KRAudioSample *load(const std::string &name, const std::string &extension, KRDataBlock *data);
KRAudioSample *get(const std::string &name);
// Listener position and orientation
KRScene *getListenerScene();
void setListenerScene(KRScene *scene);
void setListenerOrientation(const KRVector3 &position, const KRVector3 &forward, const KRVector3 &up);
void setListenerOrientationFromModelMatrix(const KRMat4 &modelMatrix);
KRVector3 &getListenerForward();
KRVector3 &getListenerPosition();
KRVector3 &getListenerUp();
// Global audio gain / attenuation
float getGlobalGain();
void setGlobalGain(float gain);
float getGlobalReverbSendLevel();
void setGlobalReverbSendLevel(float send_level);
float getGlobalAmbientGain();
void setGlobalAmbientGain(float gain);
void makeCurrentContext();
KRDataBlock *getBufferData(int size);
void recycleBufferData(KRDataBlock *data);
enum audio_engine_t {
KRAKEN_AUDIO_NONE,
KRAKEN_AUDIO_OPENAL,
KRAKEN_AUDIO_SIREN
};
audio_engine_t getAudioEngine();
void activateAudioSource(KRAudioSource *audioSource);
void deactivateAudioSource(KRAudioSource *audioSource);
__int64_t getAudioFrame();
KRAudioBuffer *getBuffer(KRAudioSample &audio_sample, int buffer_index);
void startFrame(float deltaTime);
bool getEnableAudio();
void setEnableAudio(bool enable);
bool getEnableHRTF();
void setEnableHRTF(bool enable);
bool getEnableReverb();
void setEnableReverb(bool enable);
float getReverbMaxLength();
void setReverbMaxLength(float max_length);
private:
bool m_enable_audio;
bool m_enable_hrtf;
bool m_enable_reverb;
float m_reverb_max_length;
KRScene *m_listener_scene; // For now, only one scene is allowed to have active audio at once
float m_global_reverb_send_level;
float m_global_ambient_gain;
float m_global_gain;
KRVector3 m_listener_position;
KRVector3 m_listener_forward;
KRVector3 m_listener_up;
unordered_map<std::string, KRAudioSample *> m_sounds;
std::vector<KRDataBlock *> m_bufferPoolIdle;
std::vector<KRAudioBuffer *> m_bufferCache;
std::set<KRAudioSource *> m_activeAudioSources;
void initAudio();
void initOpenAL();
void initSiren();
void initHRTF();
void cleanupAudio();
void cleanupOpenAL();
void cleanupSiren();
audio_engine_t m_audio_engine;
// OpenAL Handles
ALCcontext* m_alContext;
ALCdevice* m_alDevice;
// Siren Handles
AUGraph m_auGraph;
AudioUnit m_auMixer;
static OSStatus renderInput(void *inRefCon, AudioUnitRenderActionFlags *ioActionFlags, const AudioTimeStamp *inTimeStamp, UInt32 inBusNumber, UInt32 inNumberFrames, AudioBufferList *ioData);
void renderAudio(UInt32 inNumberFrames, AudioBufferList *ioData);
__int64_t m_audio_frame; // Number of audio frames processed since the start of the application
float *m_reverb_input_samples; // Circular-buffered reverb input, single channel
int m_reverb_input_next_sample; // Pointer to next sample in reverb buffer
int m_reverb_sequence;
KRAudioSample *m_reverb_impulse_responses[KRENGINE_MAX_REVERB_IMPULSE_MIX];
float m_reverb_impulse_responses_weight[KRENGINE_MAX_REVERB_IMPULSE_MIX];
float *m_output_accumulation; // Interleaved output accumulation buffer
int m_output_accumulation_block_start;
int m_output_sample;
FFTSetup m_fft_setup[KRENGINE_REVERB_MAX_FFT_LOG2 - KRENGINE_AUDIO_BLOCK_LOG2N + 1];
float *m_workspace_data;
DSPSplitComplex m_workspace[3];
float *getBlockAddress(int block_offset);
void renderBlock();
void renderReverb();
void renderAmbient();
void renderHRTF();
void renderITD();
void renderReverbImpulseResponse(int impulse_response_offset, int frame_count_log2);
std::vector<KRVector2> m_hrtf_sample_locations;
float *m_hrtf_data;
unordered_map<KRVector2, DSPSplitComplex> m_hrtf_spectral[2];
KRVector2 getNearestHRTFSample(const KRVector2 &dir);
void getHRTFMix(const KRVector2 &dir, KRVector2 &hrtf1, KRVector2 &hrtf2, KRVector2 &hrtf3, KRVector2 &hrtf4, float &mix1, float &mix2, float &mix3, float &mix4);
KRAudioSample *getHRTFSample(const KRVector2 &hrtf_dir);
DSPSplitComplex getHRTFSpectral(const KRVector2 &hrtf_dir, const int channel);
unordered_map<std::string, siren_ambient_zone_weight_info> m_ambient_zone_weights;
float m_ambient_zone_total_weight = 0.0f; // For normalizing zone weights
unordered_map<std::string, siren_reverb_zone_weight_info> m_reverb_zone_weights;
float m_reverb_zone_total_weight = 0.0f; // For normalizing zone weights
boost::signals2::mutex m_mutex;
mach_timebase_info_data_t m_timebase_info;
unordered_multimap<KRVector2, std::pair<KRAudioSource *, std::pair<float, float> > > m_mapped_sources, m_prev_mapped_sources;
bool m_anticlick_block;
bool m_high_quality_hrtf; // If true, 4 HRTF samples will be interpolated; if false, the nearest HRTF sample will be used without interpolation
};
#endif /* defined(KRAUDIO_MANAGER_H) */