Files
kraken/kraken/KRPointLight.cpp
Kearwood Kip Gilbert 5362bbd526 /s/KRAABB/AABB/g
Cleanup, new hash<> functions
2017-07-29 19:23:21 -07:00

227 lines
8.7 KiB
C++
Executable File

//
// KRPointLight.cpp
// KREngine
//
// Created by Kearwood Gilbert on 12-04-05.
// Copyright (c) 2012 Kearwood Software. All rights reserved.
//
#include "KREngine-common.h"
#include "KRPointLight.h"
#include "KRCamera.h"
#include "KRContext.h"
#include "KRStockGeometry.h"
KRPointLight::KRPointLight(KRScene &scene, std::string name) : KRLight(scene, name)
{
m_sphereVertices = NULL;
m_cVertices = 0;
}
KRPointLight::~KRPointLight()
{
if(m_sphereVertices) {
delete m_sphereVertices;
m_cVertices = 0;
}
}
std::string KRPointLight::getElementName() {
return "point_light";
}
AABB KRPointLight::getBounds() {
float influence_radius = m_decayStart - sqrt(m_intensity * 0.01f) / sqrt(KRLIGHT_MIN_INFLUENCE);
if(influence_radius < m_flareOcclusionSize) {
influence_radius = m_flareOcclusionSize;
}
return AABB(Vector3(-influence_radius), Vector3(influence_radius), getModelMatrix());
}
void KRPointLight::render(KRCamera *pCamera, std::vector<KRPointLight *> &point_lights, std::vector<KRDirectionalLight *> &directional_lights, std::vector<KRSpotLight *>&spot_lights, const KRViewport &viewport, KRNode::RenderPass renderPass)
{
if(m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
KRLight::render(pCamera, point_lights, directional_lights, spot_lights, viewport, renderPass);
bool bVisualize = renderPass == KRNode::RENDER_PASS_FORWARD_TRANSPARENT && pCamera->settings.bShowDeferred;
if(renderPass == KRNode::RENDER_PASS_DEFERRED_LIGHTS || bVisualize) {
// Lights are rendered on the second pass of the deferred renderer
std::vector<KRPointLight *> this_light;
this_light.push_back(this);
Vector3 light_position = getLocalTranslation();
float influence_radius = m_decayStart - sqrt(m_intensity * 0.01f) / sqrt(KRLIGHT_MIN_INFLUENCE);
Matrix4 sphereModelMatrix = Matrix4();
sphereModelMatrix.scale(influence_radius);
sphereModelMatrix.translate(light_position.x, light_position.y, light_position.z);
if(viewport.visible(getBounds())) { // Cull out any lights not within the view frustrum
Vector3 view_light_position = Matrix4::Dot(viewport.getViewMatrix(), light_position);
bool bInsideLight = view_light_position.sqrMagnitude() <= (influence_radius + pCamera->settings.getPerspectiveNearZ()) * (influence_radius + pCamera->settings.getPerspectiveNearZ());
KRShader *pShader = getContext().getShaderManager()->getShader(bVisualize ? "visualize_overlay" : (bInsideLight ? "light_point_inside" : "light_point"), pCamera, this_light, std::vector<KRDirectionalLight *>(), std::vector<KRSpotLight *>(), 0, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, renderPass);
if(getContext().getShaderManager()->selectShader(*pCamera, pShader, viewport, sphereModelMatrix, this_light, std::vector<KRDirectionalLight *>(), std::vector<KRSpotLight *>(), 0, renderPass, Vector3::Zero(), 0.0f, Vector4::Zero())) {
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_COLOR, m_color);
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_INTENSITY, m_intensity * 0.01f);
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_DECAY_START, getDecayStart());
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_CUTOFF, KRLIGHT_MIN_INFLUENCE);
pShader->setUniform(KRShader::KRENGINE_UNIFORM_LIGHT_POSITION, light_position);
if(bVisualize) {
// Enable additive blending
GLDEBUG(glEnable(GL_BLEND));
GLDEBUG(glBlendFunc(GL_ONE, GL_ONE));
}
// Disable z-buffer write
GLDEBUG(glDepthMask(GL_FALSE));
if(bInsideLight) {
// Disable z-buffer test
GLDEBUG(glDisable(GL_DEPTH_TEST));
// Render a full screen quad
m_pContext->getMeshManager()->bindVBO(&m_pContext->getMeshManager()->KRENGINE_VBO_DATA_2D_SQUARE_VERTICES, 1.0f);
GLDEBUG(glDrawArrays(GL_TRIANGLE_STRIP, 0, 4));
} else {
#if GL_OES_vertex_array_object
GLDEBUG(glBindVertexArrayOES(0));
#endif
m_pContext->getMeshManager()->configureAttribs(1 << KRMesh::KRENGINE_ATTRIB_VERTEX);
// Render sphere of light's influence
generateMesh();
// Enable z-buffer test
GLDEBUG(glEnable(GL_DEPTH_TEST));
GLDEBUG(glDepthFunc(GL_LEQUAL));
GLDEBUG(glDepthRangef(0.0, 1.0));
GLDEBUG(glVertexAttribPointer(KRMesh::KRENGINE_ATTRIB_VERTEX, 3, GL_FLOAT, 0, 0, m_sphereVertices));
GLDEBUG(glDrawArrays(GL_TRIANGLES, 0, m_cVertices));
}
}
if(bVisualize) {
// Enable alpha blending
GLDEBUG(glEnable(GL_BLEND));
GLDEBUG(glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA));
}
}
}
}
void KRPointLight::generateMesh() {
// Create a triangular facet approximation to a sphere
// Based on algorithm from Paul Bourke: http://paulbourke.net/miscellaneous/sphere_cylinder/
int iterations = 3;
int facet_count = pow(4, iterations) * 8;
if(m_cVertices != facet_count * 3) {
if(m_sphereVertices) {
free(m_sphereVertices);
m_sphereVertices = NULL;
}
m_cVertices = facet_count * 3;
class Facet3 {
public:
Facet3() {
}
~Facet3() {
}
Vector3 p1;
Vector3 p2;
Vector3 p3;
};
std::vector<Facet3> f = std::vector<Facet3>(facet_count);
int i,it;
float a;
Vector3 p[6] = {
Vector3(0,0,1),
Vector3(0,0,-1),
Vector3(-1,-1,0),
Vector3(1,-1,0),
Vector3(1,1,0),
Vector3(-1,1,0)
};
Vector3 pa,pb,pc;
int nt = 0,ntold;
/* Create the level 0 object */
a = 1 / sqrt(2.0);
for (i=0;i<6;i++) {
p[i].x *= a;
p[i].y *= a;
}
f[0].p1 = p[0]; f[0].p2 = p[3]; f[0].p3 = p[4];
f[1].p1 = p[0]; f[1].p2 = p[4]; f[1].p3 = p[5];
f[2].p1 = p[0]; f[2].p2 = p[5]; f[2].p3 = p[2];
f[3].p1 = p[0]; f[3].p2 = p[2]; f[3].p3 = p[3];
f[4].p1 = p[1]; f[4].p2 = p[4]; f[4].p3 = p[3];
f[5].p1 = p[1]; f[5].p2 = p[5]; f[5].p3 = p[4];
f[6].p1 = p[1]; f[6].p2 = p[2]; f[6].p3 = p[5];
f[7].p1 = p[1]; f[7].p2 = p[3]; f[7].p3 = p[2];
nt = 8;
/* Bisect each edge and move to the surface of a unit sphere */
for (it=0;it<iterations;it++) {
ntold = nt;
for (i=0;i<ntold;i++) {
pa.x = (f[i].p1.x + f[i].p2.x) / 2;
pa.y = (f[i].p1.y + f[i].p2.y) / 2;
pa.z = (f[i].p1.z + f[i].p2.z) / 2;
pb.x = (f[i].p2.x + f[i].p3.x) / 2;
pb.y = (f[i].p2.y + f[i].p3.y) / 2;
pb.z = (f[i].p2.z + f[i].p3.z) / 2;
pc.x = (f[i].p3.x + f[i].p1.x) / 2;
pc.y = (f[i].p3.y + f[i].p1.y) / 2;
pc.z = (f[i].p3.z + f[i].p1.z) / 2;
pa.normalize();
pb.normalize();
pc.normalize();
f[nt].p1 = f[i].p1; f[nt].p2 = pa; f[nt].p3 = pc; nt++;
f[nt].p1 = pa; f[nt].p2 = f[i].p2; f[nt].p3 = pb; nt++;
f[nt].p1 = pb; f[nt].p2 = f[i].p3; f[nt].p3 = pc; nt++;
f[i].p1 = pa;
f[i].p2 = pb;
f[i].p3 = pc;
}
}
m_sphereVertices = (GLfloat *)malloc(sizeof(GLfloat) * m_cVertices * 3);
assert(m_sphereVertices != NULL);
GLfloat *pDest = m_sphereVertices;
for(int facet_index=0; facet_index < facet_count; facet_index++) {
*pDest++ = f[facet_index].p1.x;
*pDest++ = f[facet_index].p1.y;
*pDest++ = f[facet_index].p1.z;
*pDest++ = f[facet_index].p2.x;
*pDest++ = f[facet_index].p2.y;
*pDest++ = f[facet_index].p2.z;
*pDest++ = f[facet_index].p3.x;
*pDest++ = f[facet_index].p3.y;
*pDest++ = f[facet_index].p3.z;
}
}
}