321 lines
10 KiB
C++
Executable File
321 lines
10 KiB
C++
Executable File
//
|
|
// KRModel.cpp
|
|
// Kraken Engine
|
|
//
|
|
// Copyright 2022 Kearwood Gilbert. All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other materials
|
|
// provided with the distribution.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// The views and conclusions contained in the software and documentation are those of the
|
|
// authors and should not be interpreted as representing official policies, either expressed
|
|
// or implied, of Kearwood Gilbert.
|
|
//
|
|
|
|
#include "KREngine-common.h"
|
|
|
|
#include "KRModel.h"
|
|
#include "KRContext.h"
|
|
#include "KRMesh.h"
|
|
#include "KRNode.h"
|
|
|
|
using namespace hydra;
|
|
|
|
/* static */
|
|
void KRModel::InitNodeInfo(KrNodeInfo* nodeInfo)
|
|
{
|
|
KRNode::InitNodeInfo(nodeInfo);
|
|
nodeInfo->model.faces_camera = false;
|
|
nodeInfo->model.light_map_texture = -1;
|
|
nodeInfo->model.lod_min_coverage = 0.0f;
|
|
nodeInfo->model.mesh = -1;
|
|
nodeInfo->model.receives_shadow = true;
|
|
nodeInfo->model.rim_color = Vector3::Zero();
|
|
nodeInfo->model.rim_power = 0.0f;
|
|
}
|
|
|
|
KRModel::KRModel(KRScene& scene, std::string name)
|
|
: KRNode(scene, name)
|
|
, m_pLightMap(nullptr)
|
|
, m_min_lod_coverage(0.0f)
|
|
, m_receivesShadow(true)
|
|
, m_faces_camera(false)
|
|
, m_rim_color(Vector3::Zero())
|
|
, m_rim_power(0.0f)
|
|
{
|
|
m_boundsCachedMat.c[0] = -1.0f;
|
|
m_boundsCachedMat.c[1] = -1.0f;
|
|
m_boundsCachedMat.c[2] = -1.0f;
|
|
m_boundsCachedMat.c[3] = -1.0f;
|
|
m_boundsCachedMat.c[4] = -1.0f;
|
|
m_boundsCachedMat.c[5] = -1.0f;
|
|
m_boundsCachedMat.c[6] = -1.0f;
|
|
m_boundsCachedMat.c[7] = -1.0f;
|
|
m_boundsCachedMat.c[8] = -1.0f;
|
|
m_boundsCachedMat.c[9] = -1.0f;
|
|
m_boundsCachedMat.c[10] = -1.0f;
|
|
m_boundsCachedMat.c[11] = -1.0f;
|
|
m_boundsCachedMat.c[12] = -1.0f;
|
|
m_boundsCachedMat.c[13] = -1.0f;
|
|
m_boundsCachedMat.c[14] = -1.0f;
|
|
m_boundsCachedMat.c[15] = -1.0f;
|
|
}
|
|
|
|
KRModel::KRModel(KRScene& scene, std::string instance_name, std::string model_name, std::string light_map, float lod_min_coverage, bool receives_shadow, bool faces_camera, Vector3 rim_color, float rim_power)
|
|
: KRNode(scene, instance_name)
|
|
{
|
|
m_lightMap = light_map;
|
|
m_pLightMap = NULL;
|
|
m_model_name = model_name;
|
|
m_min_lod_coverage = lod_min_coverage;
|
|
m_receivesShadow = receives_shadow;
|
|
m_faces_camera = faces_camera;
|
|
m_rim_color = rim_color;
|
|
m_rim_power = rim_power;
|
|
|
|
m_boundsCachedMat.c[0] = -1.0f;
|
|
m_boundsCachedMat.c[1] = -1.0f;
|
|
m_boundsCachedMat.c[2] = -1.0f;
|
|
m_boundsCachedMat.c[3] = -1.0f;
|
|
m_boundsCachedMat.c[4] = -1.0f;
|
|
m_boundsCachedMat.c[5] = -1.0f;
|
|
m_boundsCachedMat.c[6] = -1.0f;
|
|
m_boundsCachedMat.c[7] = -1.0f;
|
|
m_boundsCachedMat.c[8] = -1.0f;
|
|
m_boundsCachedMat.c[9] = -1.0f;
|
|
m_boundsCachedMat.c[10] = -1.0f;
|
|
m_boundsCachedMat.c[11] = -1.0f;
|
|
m_boundsCachedMat.c[12] = -1.0f;
|
|
m_boundsCachedMat.c[13] = -1.0f;
|
|
m_boundsCachedMat.c[14] = -1.0f;
|
|
m_boundsCachedMat.c[15] = -1.0f;
|
|
}
|
|
|
|
KRModel::~KRModel()
|
|
{
|
|
|
|
}
|
|
|
|
std::string KRModel::getElementName()
|
|
{
|
|
return "model";
|
|
}
|
|
|
|
tinyxml2::XMLElement* KRModel::saveXML(tinyxml2::XMLNode* parent)
|
|
{
|
|
tinyxml2::XMLElement* e = KRNode::saveXML(parent);
|
|
e->SetAttribute("mesh", m_model_name.c_str());
|
|
e->SetAttribute("light_map", m_lightMap.c_str());
|
|
e->SetAttribute("lod_min_coverage", m_min_lod_coverage);
|
|
e->SetAttribute("receives_shadow", m_receivesShadow ? "true" : "false");
|
|
e->SetAttribute("faces_camera", m_faces_camera ? "true" : "false");
|
|
kraken::setXMLAttribute("rim_color", e, m_rim_color, Vector3::Zero());
|
|
e->SetAttribute("rim_power", m_rim_power);
|
|
return e;
|
|
}
|
|
|
|
void KRModel::setRimColor(const Vector3& rim_color)
|
|
{
|
|
m_rim_color = rim_color;
|
|
}
|
|
|
|
void KRModel::setRimPower(float rim_power)
|
|
{
|
|
m_rim_power = rim_power;
|
|
}
|
|
|
|
Vector3 KRModel::getRimColor()
|
|
{
|
|
return m_rim_color;
|
|
}
|
|
|
|
float KRModel::getRimPower()
|
|
{
|
|
return m_rim_power;
|
|
}
|
|
|
|
void KRModel::setLightMap(const std::string& name)
|
|
{
|
|
m_lightMap = name;
|
|
m_pLightMap = NULL;
|
|
}
|
|
|
|
std::string KRModel::getLightMap()
|
|
{
|
|
return m_lightMap;
|
|
}
|
|
|
|
void KRModel::loadModel()
|
|
{
|
|
if (m_models.size() == 0) {
|
|
std::vector<KRMesh*> models = m_pContext->getMeshManager()->getModel(m_model_name.c_str()); // The model manager returns the LOD levels in sorted order, with the highest detail first
|
|
unordered_map<KRMesh*, std::vector<KRBone*> > bones;
|
|
if (models.size() > 0) {
|
|
bool all_bones_found = true;
|
|
for (std::vector<KRMesh*>::iterator model_itr = models.begin(); model_itr != models.end(); model_itr++) {
|
|
KRMesh* model = *model_itr;
|
|
std::vector<KRBone*> model_bones;
|
|
int bone_count = model->getBoneCount();
|
|
for (int bone_index = 0; bone_index < bone_count; bone_index++) {
|
|
KRBone* matching_bone = dynamic_cast<KRBone*>(getScene().getRootNode()->find<KRNode>(model->getBoneName(bone_index)));
|
|
if (matching_bone) {
|
|
model_bones.push_back(matching_bone);
|
|
} else {
|
|
all_bones_found = false; // Reject when there are any missing bones or multiple matches
|
|
}
|
|
}
|
|
bones[model] = model_bones;
|
|
}
|
|
if (all_bones_found) {
|
|
m_models = models;
|
|
m_bones = bones;
|
|
getScene().notify_sceneGraphModify(this);
|
|
}
|
|
|
|
invalidateBounds();
|
|
}
|
|
}
|
|
}
|
|
|
|
void KRModel::render(KRNode::RenderInfo& ri)
|
|
{
|
|
|
|
if (m_lod_visible >= LOD_VISIBILITY_PRESTREAM && ri.renderPass == KRNode::RENDER_PASS_PRESTREAM) {
|
|
preStream(ri.viewport);
|
|
}
|
|
|
|
if (m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
|
|
|
|
KRNode::render(ri);
|
|
|
|
if (ri.renderPass != KRNode::RENDER_PASS_DEFERRED_LIGHTS
|
|
&& ri.renderPass != KRNode::RENDER_PASS_ADDITIVE_PARTICLES
|
|
&& ri.renderPass != KRNode::RENDER_PASS_PARTICLE_OCCLUSION
|
|
&& ri.renderPass != KRNode::RENDER_PASS_VOLUMETRIC_EFFECTS_ADDITIVE
|
|
&& ri.renderPass != KRNode::RENDER_PASS_GENERATE_SHADOWMAPS
|
|
&& ri.renderPass != KRNode::RENDER_PASS_PRESTREAM) {
|
|
loadModel();
|
|
|
|
if (m_models.size() > 0) {
|
|
// Don't render meshes on second pass of the deferred lighting renderer, as only lights will be applied
|
|
|
|
/*
|
|
float lod_coverage = 0.0f;
|
|
if(m_models.size() > 1) {
|
|
lod_coverage = viewport.coverage(getBounds()); // This also checks the view frustrum culling
|
|
} else if(viewport.visible(getBounds())) {
|
|
lod_coverage = 1.0f;
|
|
}
|
|
*/
|
|
|
|
float lod_coverage = ri.viewport.coverage(getBounds()); // This also checks the view frustrum culling
|
|
|
|
if (lod_coverage > m_min_lod_coverage) {
|
|
|
|
// ---===--- Select the best LOD model based on screen coverage ---===---
|
|
std::vector<KRMesh*>::iterator itr = m_models.begin();
|
|
KRMesh* pModel = *itr++;
|
|
|
|
while (itr != m_models.end()) {
|
|
KRMesh* pLODModel = *itr++;
|
|
if ((float)pLODModel->getLODCoverage() / 100.0f > lod_coverage && pLODModel->getLODCoverage() < pModel->getLODCoverage()) {
|
|
pModel = pLODModel;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (m_pLightMap == NULL && m_lightMap.size()) {
|
|
m_pLightMap = getContext().getTextureManager()->getTexture(m_lightMap);
|
|
}
|
|
|
|
if (m_pLightMap && ri.camera->settings.bEnableLightMap && ri.renderPass != RENDER_PASS_SHADOWMAP && ri.renderPass != RENDER_PASS_GENERATE_SHADOWMAPS) {
|
|
m_pLightMap->resetPoolExpiry(lod_coverage, KRTexture::TEXTURE_USAGE_LIGHT_MAP);
|
|
// TODO - Vulkan refactoring. We need to bind the shadow map in KRMesh::Render
|
|
// m_pContext->getTextureManager()->selectTexture(5, m_pLightMap, lod_coverage, KRTexture::TEXTURE_USAGE_LIGHT_MAP);
|
|
}
|
|
|
|
Matrix4 matModel = getModelMatrix();
|
|
if (m_faces_camera) {
|
|
Vector3 model_center = Matrix4::Dot(matModel, Vector3::Zero());
|
|
Vector3 camera_pos = ri.viewport.getCameraPosition();
|
|
matModel = Quaternion::Create(Vector3::Forward(), Vector3::Normalize(camera_pos - model_center)).rotationMatrix() * matModel;
|
|
}
|
|
|
|
pModel->render(ri, getName(), matModel, m_pLightMap, m_bones[pModel], m_rim_color, m_rim_power, lod_coverage);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void KRModel::preStream(const KRViewport& viewport)
|
|
{
|
|
loadModel();
|
|
float lod_coverage = viewport.coverage(getBounds());
|
|
|
|
for (auto itr = m_models.begin(); itr != m_models.end(); itr++) {
|
|
(*itr)->preStream(lod_coverage);
|
|
}
|
|
|
|
if (m_pLightMap == NULL && m_lightMap.size()) {
|
|
m_pLightMap = getContext().getTextureManager()->getTexture(m_lightMap);
|
|
}
|
|
|
|
if (m_pLightMap) {
|
|
m_pLightMap->resetPoolExpiry(lod_coverage, KRTexture::TEXTURE_USAGE_LIGHT_MAP);
|
|
}
|
|
}
|
|
|
|
|
|
kraken_stream_level KRModel::getStreamLevel(const KRViewport& viewport)
|
|
{
|
|
kraken_stream_level stream_level = KRNode::getStreamLevel(viewport);
|
|
|
|
loadModel();
|
|
|
|
for (auto itr = m_models.begin(); itr != m_models.end(); itr++) {
|
|
stream_level = KRMIN(stream_level, (*itr)->getStreamLevel());
|
|
}
|
|
|
|
return stream_level;
|
|
}
|
|
|
|
AABB KRModel::getBounds()
|
|
{
|
|
loadModel();
|
|
if (m_models.size() > 0) {
|
|
if (m_faces_camera) {
|
|
AABB normal_bounds = AABB::Create(m_models[0]->getMinPoint(), m_models[0]->getMaxPoint(), getModelMatrix());
|
|
float max_dimension = normal_bounds.longest_radius();
|
|
return AABB::Create(normal_bounds.center() - Vector3::Create(max_dimension), normal_bounds.center() + Vector3::Create(max_dimension));
|
|
} else {
|
|
|
|
if (!(m_boundsCachedMat == getModelMatrix())) {
|
|
m_boundsCachedMat = getModelMatrix();
|
|
m_boundsCached = AABB::Create(m_models[0]->getMinPoint(), m_models[0]->getMaxPoint(), getModelMatrix());
|
|
}
|
|
return m_boundsCached;
|
|
}
|
|
} else {
|
|
return AABB::Infinite();
|
|
}
|
|
}
|
|
|