Files
kraken/KREngine/KREngine/Classes/KRMesh.cpp
kearwood 67fee4a291 Implementation of FBX import workflow in progress
--HG--
extra : convert_revision : svn%3A7752d6cf-9f14-4ad2-affc-04f1e67b81a5/trunk%4018
2012-03-23 02:28:46 +00:00

410 lines
15 KiB
C++

//
// KRMesh.cpp
// KREngine
//
// Copyright 2012 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KRMesh.h"
#import "KRShader.h"
#import <stdint.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
KRMesh::KRMesh(std::string name) : KRResource(name) {
m_fdPackFile = 0;
m_pPackData = NULL;
m_iPackFileSize = 0;
m_cBuffers = 0;
m_pBuffers = NULL;
}
KRMesh::~KRMesh() {
clearData();
}
void KRMesh::clearData() {
clearBuffers();
if(m_fdPackFile) {
if(m_pPackData != NULL) {
munmap(m_pPackData, m_iPackFileSize);
m_pPackData = NULL;
}
close(m_fdPackFile);
m_fdPackFile = 0;
} else {
// If we didn't load a packed file, then the data was calculated at run time and malloc'ed
if(m_pPackData != NULL) {
free(m_pPackData);
m_pPackData = NULL;
}
}
}
void KRMesh::clearBuffers() {
m_submeshes.clear();
if(m_pBuffers != NULL) {
glDeleteBuffers(m_cBuffers, m_pBuffers);
delete m_pBuffers;
m_pBuffers = NULL;
}
}
void KRMesh::loadPack(std::string path) {
clearData();
struct stat statbuf;
m_fdPackFile = open(path.c_str(), O_RDONLY);
if(m_fdPackFile >= 0) {
if(fstat(m_fdPackFile, &statbuf) >= 0) {
if ((m_pPackData = mmap (0, statbuf.st_size, PROT_READ, MAP_SHARED, m_fdPackFile, 0)) == (caddr_t) -1) {
} else {
m_iPackFileSize = statbuf.st_size;
pack_header *pHeader = (pack_header *)m_pPackData;
m_minx = pHeader->minx;
m_miny = pHeader->miny;
m_minz = pHeader->minz;
m_maxx = pHeader->maxx;
m_maxy = pHeader->maxy;
m_maxz = pHeader->maxz;
}
}
}
}
bool KRMesh::save(const std::string& path) {
clearBuffers();
int fdNewFile = open(path.c_str(), O_RDWR | O_CREAT | O_TRUNC, (mode_t)0600);
if(fdNewFile == -1) {
return false;
} else {
// Seek to end of file and write a byte to enlarge it
lseek(fdNewFile, m_iPackFileSize-1, SEEK_SET);
write(fdNewFile, "", 1);
// Now map it...
void *pNewData = mmap(0, m_iPackFileSize, PROT_READ | PROT_WRITE, MAP_SHARED, fdNewFile, 0);
if(pNewData == (caddr_t) -1) {
close(fdNewFile);
return false;
} else {
memcpy(pNewData, m_pPackData, m_iPackFileSize);
mprotect(pNewData, m_iPackFileSize, PROT_READ);
if(m_fdPackFile) {
if(m_pPackData != NULL) {
void *malloc_data = malloc(m_iPackFileSize);
memcpy(malloc_data, m_pPackData, m_iPackFileSize);
munmap(m_pPackData, m_iPackFileSize);
}
close(m_fdPackFile);
}
m_fdPackFile = fdNewFile;
m_pPackData = pNewData;
return true;
}
}
}
void KRMesh::unmap() {
clearBuffers();
if(m_fdPackFile) {
if(m_pPackData != NULL) {
void *malloc_data = malloc(m_iPackFileSize);
memcpy(malloc_data, m_pPackData, m_iPackFileSize);
munmap(m_pPackData, m_iPackFileSize);
m_pPackData = malloc_data;
}
close(m_fdPackFile);
}
}
GLfloat KRMesh::getMaxDimension() {
GLfloat m = 0.0;
if(m_maxx - m_minx > m) m = m_maxx - m_minx;
if(m_maxy - m_miny > m) m = m_maxy - m_miny;
if(m_maxz - m_minz > m) m = m_maxz - m_minz;
return m;
}
GLfloat KRMesh::getMinX() {
return m_minx;
}
GLfloat KRMesh::getMaxX() {
return m_maxx;
}
GLfloat KRMesh::getMinY() {
return m_miny;
}
GLfloat KRMesh::getMaxY() {
return m_maxy;
}
GLfloat KRMesh::getMinZ() {
return m_minz;
}
GLfloat KRMesh::getMaxZ() {
return m_maxz;
}
vector<KRMesh::Submesh *> KRMesh::getSubmeshes() {
if(m_submeshes.size() == 0) {
pack_header *pHeader = (pack_header *)m_pPackData;
pack_material *pPackMaterials = (pack_material *)(pHeader+1);
m_submeshes.clear();
for(int iMaterial=0; iMaterial < pHeader->submesh_count; iMaterial++) {
pack_material *pPackMaterial = pPackMaterials + iMaterial;
Submesh *pSubmesh = new Submesh();
pSubmesh->start_vertex = pPackMaterial->start_vertex;
pSubmesh->vertex_count = pPackMaterial->vertex_count;
strcpy(pSubmesh->szMaterialName, pPackMaterial->szName);
m_submeshes.push_back(pSubmesh);
}
}
return m_submeshes;
}
void KRMesh::renderSubmesh(int iSubmesh, int *iPrevBuffer) {
VertexData *pVertexData = getVertexData();
if(m_cBuffers == 0) {
pack_header *pHeader = (pack_header *)m_pPackData;
m_cBuffers = (pHeader->vertex_count + MAX_VBO_SIZE - 1) / MAX_VBO_SIZE;
m_pBuffers = new GLuint[m_cBuffers];
glGenBuffers(m_cBuffers, m_pBuffers);
for(GLsizei iBuffer=0; iBuffer < m_cBuffers; iBuffer++) {
GLsizei cVertexes = iBuffer < m_cBuffers - 1 ? MAX_VBO_SIZE : pHeader->vertex_count % MAX_VBO_SIZE;
glBindBuffer(GL_ARRAY_BUFFER, m_pBuffers[iBuffer]);
glBufferData(GL_ARRAY_BUFFER, sizeof(VertexData) * cVertexes, pVertexData + iBuffer * MAX_VBO_SIZE, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
}
vector<KRMesh::Submesh *> submeshes = getSubmeshes();
Submesh *pSubmesh = submeshes[iSubmesh];
int iVertex = pSubmesh->start_vertex;
int iBuffer = iVertex / MAX_VBO_SIZE;
iVertex = iVertex % MAX_VBO_SIZE;
int cVertexes = pSubmesh->vertex_count;
while(cVertexes > 0) {
if(*iPrevBuffer != iBuffer) {
glBindBuffer(GL_ARRAY_BUFFER, m_pBuffers[iBuffer]);
if(*iPrevBuffer == -1) {
glEnableVertexAttribArray(KRShader::KRENGINE_ATTRIB_VERTEX);
glEnableVertexAttribArray(KRShader::KRENGINE_ATTRIB_NORMAL);
glEnableVertexAttribArray(KRShader::KRENGINE_ATTRIB_TANGENT);
glEnableVertexAttribArray(KRShader::KRENGINE_ATTRIB_TEXUV);
}
glVertexAttribPointer(KRShader::KRENGINE_ATTRIB_VERTEX, 3, GL_FLOAT, 0, sizeof(VertexData), BUFFER_OFFSET(0));
glVertexAttribPointer(KRShader::KRENGINE_ATTRIB_NORMAL, 3, GL_FLOAT, 0, sizeof(VertexData), BUFFER_OFFSET(sizeof(Vertex3D)));
glVertexAttribPointer(KRShader::KRENGINE_ATTRIB_TANGENT, 3, GL_FLOAT, 0, sizeof(VertexData), BUFFER_OFFSET(sizeof(Vertex3D) + sizeof(KRVector3D)));
glVertexAttribPointer(KRShader::KRENGINE_ATTRIB_TEXUV, 2, GL_FLOAT, 0, sizeof(VertexData), BUFFER_OFFSET(sizeof(Vertex3D) + sizeof(KRVector3D) * 2));
*iPrevBuffer = iBuffer;
}
if(iVertex + cVertexes >= MAX_VBO_SIZE) {
glDrawArrays(GL_TRIANGLES, iVertex, (MAX_VBO_SIZE - iVertex));
cVertexes -= (MAX_VBO_SIZE - iVertex);
iVertex = 0;
iBuffer++;
} else {
glDrawArrays(GL_TRIANGLES, iVertex, cVertexes);
cVertexes = 0;
}
}
}
KRMesh::VertexData *KRMesh::getVertexData() {
pack_header *pHeader = (pack_header *)m_pPackData;
pack_material *pPackMaterials = (pack_material *)(pHeader+1);
return (VertexData *)(pPackMaterials + pHeader->submesh_count);
}
void KRMesh::LoadData(std::vector<KRVector3> vertices, std::vector<KRVector2> uva, std::vector<KRVector3> normals, std::vector<KRVector3> tangents, std::vector<int> submesh_starts, std::vector<int> submesh_lengths, std::vector<std::string> material_names) {
clearData();
int submesh_count = submesh_lengths.size();
int vertex_count = vertices.size();
m_iPackFileSize = sizeof(pack_header) + sizeof(pack_material) * submesh_count + sizeof(VertexData) * vertex_count;
m_pPackData = malloc(m_iPackFileSize);
pack_header *pHeader = (pack_header *)m_pPackData;
memset(pHeader, 0, sizeof(pack_header));
pHeader->submesh_count = submesh_lengths.size();
pHeader->vertex_count = vertices.size();
strcpy(pHeader->szTag, "KROBJPACK1.0 ");
pack_material *pPackMaterials = (pack_material *)(pHeader+1);
for(int iMaterial=0; iMaterial < pHeader->submesh_count; iMaterial++) {
pack_material *pPackMaterial = pPackMaterials + iMaterial;
pPackMaterial->start_vertex = submesh_starts[iMaterial];
pPackMaterial->vertex_count = submesh_lengths[iMaterial];
strcpy(pPackMaterial->szName, material_names[iMaterial].c_str());
}
bool bFirstVertex = true;
VertexData *pVertexData = (VertexData *)(pPackMaterials + pHeader->submesh_count);
VertexData *pVertex = pVertexData;
for(int iVertex=0; iVertex < vertices.size(); iVertex++) {
memset(pVertex, 0, sizeof(VertexData));
KRVector3 source_vertex = vertices[iVertex];
pVertex->vertex.x = source_vertex.x;
pVertex->vertex.y = source_vertex.y;
pVertex->vertex.z = source_vertex.z;
if(bFirstVertex) {
bFirstVertex = false;
m_minx = source_vertex.x;
m_miny = source_vertex.y;
m_minz = source_vertex.z;
m_maxx = source_vertex.x;
m_maxy = source_vertex.y;
m_maxz = source_vertex.z;
} else {
if(source_vertex.x < m_minx) m_minx = source_vertex.x;
if(source_vertex.y < m_miny) m_miny = source_vertex.y;
if(source_vertex.z < m_minz) m_minz = source_vertex.z;
if(source_vertex.x > m_maxx) m_maxx = source_vertex.x;
if(source_vertex.y > m_maxy) m_maxy = source_vertex.y;
if(source_vertex.z > m_maxz) m_maxz = source_vertex.z;
}
if(uva.size() > iVertex) {
KRVector2 source_uva = uva[iVertex];
pVertex->texcoord.u = source_uva.x;
pVertex->texcoord.v = source_uva.y;
}
if(normals.size() > iVertex) {
KRVector3 source_normal = normals[iVertex];
pVertex->normal.x = source_normal.x;
pVertex->normal.y = source_normal.y;
pVertex->normal.z = source_normal.z;
}
if(tangents.size() > iVertex) {
KRVector3 source_tangent = tangents[iVertex];
pVertex->tangent.x = source_tangent.x;
pVertex->tangent.y = source_tangent.y;
pVertex->tangent.z = source_tangent.z;
}
pVertex++;
}
pHeader->minx = m_minx;
pHeader->miny = m_miny;
pHeader->minz = m_minz;
pHeader->maxx = m_maxx;
pHeader->maxy = m_maxy;
pHeader->maxz = m_maxz;
// Calculate missing surface normals and tangents
//cout << " Calculate surface normals and tangents\n";
VertexData *pStart = pVertexData;
VertexData *pEnd = pStart + vertex_count;
for(VertexData *pVertex = pStart; pVertex < pEnd; pVertex+=3) {
KRVector3 p1(pVertex[0].vertex.x, pVertex[0].vertex.y, pVertex[0].vertex.z);
KRVector3 p2(pVertex[1].vertex.x, pVertex[1].vertex.y, pVertex[1].vertex.z);
KRVector3 p3(pVertex[2].vertex.x, pVertex[2].vertex.y, pVertex[2].vertex.z);
KRVector3 v1 = p2 - p1;
KRVector3 v2 = p3 - p1;
// -- Calculate normal --
if(pVertex->normal.x == 0 && pVertex->normal.y == 0 && pVertex->normal.z == 0) {
KRVector3 normal = v1.cross( v2 );
normal.normalize();
pVertex[0].normal.x = normal.x;
pVertex[0].normal.y = normal.y;
pVertex[0].normal.z = normal.z;
pVertex[1].normal.x = normal.x;
pVertex[1].normal.y = normal.y;
pVertex[1].normal.z = normal.z;
pVertex[2].normal.x = normal.x;
pVertex[2].normal.y = normal.y;
pVertex[2].normal.z = normal.z;
}
// -- Calculate tangent vector for normal mapping --
if(pVertex->tangent.x == 0 && pVertex->tangent.y == 0 && pVertex->tangent.z == 0) {
TexCoord st1; // = pVertex[2].texcoord;
TexCoord st2; // = pVertex[1].texcoord;
st1.u = pVertex[1].texcoord.u - pVertex[0].texcoord.u;
st1.v = pVertex[1].texcoord.v - pVertex[0].texcoord.v;
st2.u = pVertex[2].texcoord.u - pVertex[0].texcoord.u;
st2.v = pVertex[2].texcoord.v - pVertex[0].texcoord.v;
double coef = 1/ (st1.u * st2.v - st2.u * st1.v);
pVertex[0].tangent.x = coef * ((v1.x * st2.v) + (v2.x * -st1.v));
pVertex[0].tangent.y = coef * ((v1.y * st2.v) + (v2.y * -st1.v));
pVertex[0].tangent.z = coef * ((v1.z * st2.v) + (v2.z * -st1.v));
KRVector3 tangent(
coef * ((v1.x * st2.v) + (v2.x * -st1.v)),
coef * ((v1.y * st2.v) + (v2.y * -st1.v)),
coef * ((v1.z * st2.v) + (v2.z * -st1.v))
);
tangent.normalize();
pVertex[0].tangent.x = tangent.x;
pVertex[0].tangent.y = tangent.y;
pVertex[0].tangent.z = tangent.z;
pVertex[1].tangent.x = tangent.x;
pVertex[1].tangent.y = tangent.y;
pVertex[1].tangent.z = tangent.z;
pVertex[2].tangent.x = tangent.x;
pVertex[2].tangent.y = tangent.y;
pVertex[2].tangent.z = tangent.z;
}
}
}