241 lines
9.4 KiB
C++
Executable File
241 lines
9.4 KiB
C++
Executable File
//
|
|
// KRPointLight.cpp
|
|
// Kraken Engine
|
|
//
|
|
// Copyright 2022 Kearwood Gilbert. All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other materials
|
|
// provided with the distribution.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// The views and conclusions contained in the software and documentation are those of the
|
|
// authors and should not be interpreted as representing official policies, either expressed
|
|
// or implied, of Kearwood Gilbert.
|
|
//
|
|
|
|
#include "KREngine-common.h"
|
|
|
|
#include "KRPointLight.h"
|
|
#include "KRCamera.h"
|
|
#include "KRContext.h"
|
|
|
|
/* static */
|
|
void KRPointLight::InitNodeInfo(KrNodeInfo* nodeInfo)
|
|
{
|
|
KRLight::InitNodeInfo(nodeInfo);
|
|
// No additional members
|
|
}
|
|
|
|
KRPointLight::KRPointLight(KRScene &scene, std::string name) : KRLight(scene, name)
|
|
{
|
|
m_sphereVertices = NULL;
|
|
m_cVertices = 0;
|
|
}
|
|
|
|
KRPointLight::~KRPointLight()
|
|
{
|
|
if(m_sphereVertices) {
|
|
delete m_sphereVertices;
|
|
m_cVertices = 0;
|
|
}
|
|
}
|
|
|
|
std::string KRPointLight::getElementName() {
|
|
return "point_light";
|
|
}
|
|
|
|
AABB KRPointLight::getBounds() {
|
|
float influence_radius = m_decayStart - sqrt(m_intensity * 0.01f) / sqrt(KRLIGHT_MIN_INFLUENCE);
|
|
if(influence_radius < m_flareOcclusionSize) {
|
|
influence_radius = m_flareOcclusionSize;
|
|
}
|
|
return AABB::Create(Vector3::Create(-influence_radius), Vector3::Create(influence_radius), getModelMatrix());
|
|
}
|
|
|
|
void KRPointLight::render(RenderInfo& ri)
|
|
{
|
|
if(m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
|
|
|
|
KRLight::render(ri);
|
|
|
|
bool bVisualize = ri.renderPass == KRNode::RENDER_PASS_FORWARD_TRANSPARENT && ri.camera->settings.bShowDeferred;
|
|
|
|
if(ri.renderPass == KRNode::RENDER_PASS_DEFERRED_LIGHTS || bVisualize) {
|
|
// Lights are rendered on the second pass of the deferred renderer
|
|
|
|
std::vector<KRPointLight *> this_light;
|
|
this_light.push_back(this);
|
|
|
|
Vector3 light_position = getLocalTranslation();
|
|
|
|
float influence_radius = m_decayStart - sqrt(m_intensity * 0.01f) / sqrt(KRLIGHT_MIN_INFLUENCE);
|
|
|
|
Matrix4 sphereModelMatrix = Matrix4();
|
|
sphereModelMatrix.scale(influence_radius);
|
|
sphereModelMatrix.translate(light_position.x, light_position.y, light_position.z);
|
|
|
|
if(ri.viewport.visible(getBounds())) { // Cull out any lights not within the view frustrum
|
|
|
|
Vector3 view_light_position = Matrix4::Dot(ri.viewport.getViewMatrix(), light_position);
|
|
|
|
bool bInsideLight = view_light_position.sqrMagnitude() <= (influence_radius + ri.camera->settings.getPerspectiveNearZ()) * (influence_radius + ri.camera->settings.getPerspectiveNearZ());
|
|
|
|
std::string shader_name(bVisualize ? "visualize_overlay" : (bInsideLight ? "light_point_inside" : "light_point"));
|
|
PipelineInfo info{};
|
|
info.shader_name = &shader_name;
|
|
info.pCamera = ri.camera;
|
|
info.point_lights = &this_light;
|
|
info.renderPass = ri.renderPass;
|
|
if (bInsideLight) {
|
|
info.rasterMode = bVisualize ? RasterMode::kAdditiveNoTest : RasterMode::kAlphaBlendNoTest;
|
|
}
|
|
else {
|
|
info.rasterMode = bVisualize ? RasterMode::kAdditive : RasterMode::kAlphaBlend;
|
|
}
|
|
info.vertexAttributes = bInsideLight ? m_pContext->getMeshManager()->KRENGINE_VBO_DATA_2D_SQUARE_VERTICES.getVertexAttributes() : 1 << KRMesh::KRENGINE_ATTRIB_VERTEX;
|
|
info.modelFormat = bInsideLight ? ModelFormat::KRENGINE_MODEL_FORMAT_STRIP : ModelFormat::KRENGINE_MODEL_FORMAT_TRIANGLES;
|
|
|
|
KRPipeline *pShader = getContext().getPipelineManager()->getPipeline(*ri.surface, info);
|
|
pShader->setUniform(KRPipeline::KRENGINE_UNIFORM_LIGHT_COLOR, m_color);
|
|
pShader->setUniform(KRPipeline::KRENGINE_UNIFORM_LIGHT_INTENSITY, m_intensity * 0.01f);
|
|
pShader->setUniform(KRPipeline::KRENGINE_UNIFORM_LIGHT_DECAY_START, getDecayStart());
|
|
pShader->setUniform(KRPipeline::KRENGINE_UNIFORM_LIGHT_CUTOFF, KRLIGHT_MIN_INFLUENCE);
|
|
pShader->setUniform(KRPipeline::KRENGINE_UNIFORM_LIGHT_POSITION, light_position);
|
|
pShader->bind(ri.commandBuffer, *ri.camera, ri.viewport, sphereModelMatrix, &this_light, nullptr, nullptr, ri.renderPass);
|
|
|
|
if(bInsideLight) {
|
|
// Render a full screen quad
|
|
m_pContext->getMeshManager()->bindVBO(ri.commandBuffer, &m_pContext->getMeshManager()->KRENGINE_VBO_DATA_2D_SQUARE_VERTICES, 1.0f);
|
|
vkCmdDraw(ri.commandBuffer, 4, 1, 0, 0);
|
|
} else {
|
|
// Render sphere of light's influence
|
|
generateMesh();
|
|
|
|
GLDEBUG(glVertexAttribPointer(KRMesh::KRENGINE_ATTRIB_VERTEX, 3, GL_FLOAT, 0, 0, m_sphereVertices));
|
|
|
|
vkCmdDraw(ri.commandBuffer, m_cVertices, 1, 0, 0);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
void KRPointLight::generateMesh() {
|
|
// Create a triangular facet approximation to a sphere
|
|
// Based on algorithm from Paul Bourke: http://paulbourke.net/miscellaneous/sphere_cylinder/
|
|
|
|
int iterations = 3;
|
|
int facet_count = (int)(pow(4, iterations) * 8);
|
|
|
|
if(m_cVertices != facet_count * 3) {
|
|
if(m_sphereVertices) {
|
|
free(m_sphereVertices);
|
|
m_sphereVertices = NULL;
|
|
}
|
|
|
|
m_cVertices = facet_count * 3;
|
|
|
|
|
|
class Facet3 {
|
|
public:
|
|
Facet3() {
|
|
|
|
}
|
|
~Facet3() {
|
|
|
|
}
|
|
Vector3 p1;
|
|
Vector3 p2;
|
|
Vector3 p3;
|
|
};
|
|
|
|
std::vector<Facet3> f = std::vector<Facet3>(facet_count);
|
|
|
|
int i,it;
|
|
float a;
|
|
Vector3 p[6] = {
|
|
Vector3::Create(0,0,1),
|
|
Vector3::Create(0,0,-1),
|
|
Vector3::Create(-1,-1,0),
|
|
Vector3::Create(1,-1,0),
|
|
Vector3::Create(1,1,0),
|
|
Vector3::Create(-1,1,0)
|
|
};
|
|
|
|
Vector3 pa,pb,pc;
|
|
int nt = 0,ntold;
|
|
|
|
/* Create the level 0 object */
|
|
a = 1.0f / sqrtf(2.0f);
|
|
for (i=0;i<6;i++) {
|
|
p[i].x *= a;
|
|
p[i].y *= a;
|
|
}
|
|
f[0].p1 = p[0]; f[0].p2 = p[3]; f[0].p3 = p[4];
|
|
f[1].p1 = p[0]; f[1].p2 = p[4]; f[1].p3 = p[5];
|
|
f[2].p1 = p[0]; f[2].p2 = p[5]; f[2].p3 = p[2];
|
|
f[3].p1 = p[0]; f[3].p2 = p[2]; f[3].p3 = p[3];
|
|
f[4].p1 = p[1]; f[4].p2 = p[4]; f[4].p3 = p[3];
|
|
f[5].p1 = p[1]; f[5].p2 = p[5]; f[5].p3 = p[4];
|
|
f[6].p1 = p[1]; f[6].p2 = p[2]; f[6].p3 = p[5];
|
|
f[7].p1 = p[1]; f[7].p2 = p[3]; f[7].p3 = p[2];
|
|
nt = 8;
|
|
|
|
/* Bisect each edge and move to the surface of a unit sphere */
|
|
for (it=0;it<iterations;it++) {
|
|
ntold = nt;
|
|
for (i=0;i<ntold;i++) {
|
|
pa.x = (f[i].p1.x + f[i].p2.x) / 2;
|
|
pa.y = (f[i].p1.y + f[i].p2.y) / 2;
|
|
pa.z = (f[i].p1.z + f[i].p2.z) / 2;
|
|
pb.x = (f[i].p2.x + f[i].p3.x) / 2;
|
|
pb.y = (f[i].p2.y + f[i].p3.y) / 2;
|
|
pb.z = (f[i].p2.z + f[i].p3.z) / 2;
|
|
pc.x = (f[i].p3.x + f[i].p1.x) / 2;
|
|
pc.y = (f[i].p3.y + f[i].p1.y) / 2;
|
|
pc.z = (f[i].p3.z + f[i].p1.z) / 2;
|
|
pa.normalize();
|
|
pb.normalize();
|
|
pc.normalize();
|
|
f[nt].p1 = f[i].p1; f[nt].p2 = pa; f[nt].p3 = pc; nt++;
|
|
f[nt].p1 = pa; f[nt].p2 = f[i].p2; f[nt].p3 = pb; nt++;
|
|
f[nt].p1 = pb; f[nt].p2 = f[i].p3; f[nt].p3 = pc; nt++;
|
|
f[i].p1 = pa;
|
|
f[i].p2 = pb;
|
|
f[i].p3 = pc;
|
|
}
|
|
}
|
|
|
|
m_sphereVertices = (float*)malloc(sizeof(float) * m_cVertices * 3);
|
|
assert(m_sphereVertices != NULL);
|
|
float*pDest = m_sphereVertices;
|
|
for(int facet_index=0; facet_index < facet_count; facet_index++) {
|
|
*pDest++ = f[facet_index].p1.x;
|
|
*pDest++ = f[facet_index].p1.y;
|
|
*pDest++ = f[facet_index].p1.z;
|
|
*pDest++ = f[facet_index].p2.x;
|
|
*pDest++ = f[facet_index].p2.y;
|
|
*pDest++ = f[facet_index].p2.z;
|
|
*pDest++ = f[facet_index].p3.x;
|
|
*pDest++ = f[facet_index].p3.y;
|
|
*pDest++ = f[facet_index].p3.z;
|
|
}
|
|
}
|
|
}
|