Files
kraken/kraken/KRCollider.cpp
Kearwood Kip Gilbert 5362bbd526 /s/KRAABB/AABB/g
Cleanup, new hash<> functions
2017-07-29 19:23:21 -07:00

230 lines
9.6 KiB
C++
Executable File

//
// KRCollider.cpp
// KREngine
//
// Copyright 2012 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KREngine-common.h"
#include "KRCollider.h"
#include "KRContext.h"
#include "KRMesh.h"
KRCollider::KRCollider(KRScene &scene, std::string collider_name, std::string model_name, unsigned int layer_mask, float audio_occlusion) : KRNode(scene, collider_name) {
m_model_name = model_name;
m_layer_mask = layer_mask;
m_audio_occlusion = audio_occlusion;
}
KRCollider::~KRCollider() {
}
std::string KRCollider::getElementName() {
return "collider";
}
tinyxml2::XMLElement *KRCollider::saveXML( tinyxml2::XMLNode *parent)
{
tinyxml2::XMLElement *e = KRNode::saveXML(parent);
e->SetAttribute("mesh", m_model_name.c_str());
e->SetAttribute("layer_mask", m_layer_mask);
e->SetAttribute("audio_occlusion", m_audio_occlusion);
return e;
}
void KRCollider::loadXML(tinyxml2::XMLElement *e) {
KRNode::loadXML(e);
m_model_name = e->Attribute("mesh");
m_layer_mask = 65535;
if(e->QueryUnsignedAttribute("layer_mask", &m_layer_mask) != tinyxml2::XML_SUCCESS) {
m_layer_mask = 65535;
}
m_audio_occlusion = 1.0f;
if(e->QueryFloatAttribute("audio_occlusion", &m_audio_occlusion) != tinyxml2::XML_SUCCESS) {
m_audio_occlusion = 1.0f;
}
}
void KRCollider::loadModel() {
if(m_models.size() == 0) {
m_models = m_pContext->getMeshManager()->getModel(m_model_name.c_str()); // The model manager returns the LOD levels in sorted order, with the highest detail first
if(m_models.size() > 0) {
getScene().notify_sceneGraphModify(this);
}
}
}
AABB KRCollider::getBounds() {
loadModel();
if(m_models.size() > 0) {
return AABB(m_models[0]->getMinPoint(), m_models[0]->getMaxPoint(), getModelMatrix());
} else {
return AABB::Infinite();
}
}
bool KRCollider::lineCast(const Vector3 &v0, const Vector3 &v1, KRHitInfo &hitinfo, unsigned int layer_mask)
{
if(layer_mask & m_layer_mask ) { // Only test if layer masks have a common bit set
loadModel();
if(m_models.size()) {
if(getBounds().intersectsLine(v0, v1)) {
Vector3 v0_model_space = Matrix4::Dot(getInverseModelMatrix(), v0);
Vector3 v1_model_space = Matrix4::Dot(getInverseModelMatrix(), v1);
KRHitInfo hitinfo_model_space;
if(hitinfo.didHit()) {
Vector3 hit_position_model_space = Matrix4::Dot(getInverseModelMatrix(), hitinfo.getPosition());
hitinfo_model_space = KRHitInfo(hit_position_model_space, Matrix4::DotNoTranslate(getInverseModelMatrix(), hitinfo.getNormal()), (hit_position_model_space - v0_model_space).magnitude(), hitinfo.getNode());
}
if(m_models[0]->lineCast(v0_model_space, v1_model_space, hitinfo_model_space)) {
Vector3 hit_position_world_space = Matrix4::Dot(getModelMatrix(), hitinfo_model_space.getPosition());
hitinfo = KRHitInfo(hit_position_world_space, Vector3::Normalize(Matrix4::DotNoTranslate(getModelMatrix(), hitinfo_model_space.getNormal())), (hit_position_world_space - v0).magnitude(), this);
return true;
}
}
}
}
return false;
}
bool KRCollider::rayCast(const Vector3 &v0, const Vector3 &dir, KRHitInfo &hitinfo, unsigned int layer_mask)
{
if(layer_mask & m_layer_mask) { // Only test if layer masks have a common bit set
loadModel();
if(m_models.size()) {
if(getBounds().intersectsRay(v0, dir)) {
Vector3 v0_model_space = Matrix4::Dot(getInverseModelMatrix(), v0);
Vector3 dir_model_space = Vector3::Normalize(Matrix4::DotNoTranslate(getInverseModelMatrix(), dir));
KRHitInfo hitinfo_model_space;
if(hitinfo.didHit()) {
Vector3 hit_position_model_space = Matrix4::Dot(getInverseModelMatrix(), hitinfo.getPosition());
hitinfo_model_space = KRHitInfo(hit_position_model_space, Vector3::Normalize(Matrix4::DotNoTranslate(getInverseModelMatrix(), hitinfo.getNormal())), (hit_position_model_space - v0_model_space).magnitude(), hitinfo.getNode());
}
if(m_models[0]->rayCast(v0_model_space, dir_model_space, hitinfo_model_space)) {
Vector3 hit_position_world_space = Matrix4::Dot(getModelMatrix(), hitinfo_model_space.getPosition());
hitinfo = KRHitInfo(hit_position_world_space, Vector3::Normalize(Matrix4::DotNoTranslate(getModelMatrix(), hitinfo_model_space.getNormal())), (hit_position_world_space - v0).magnitude(), this);
return true;
}
}
}
}
return false;
}
bool KRCollider::sphereCast(const Vector3 &v0, const Vector3 &v1, float radius, KRHitInfo &hitinfo, unsigned int layer_mask)
{
if(layer_mask & m_layer_mask) { // Only test if layer masks have a common bit set
loadModel();
if(m_models.size()) {
AABB sphereCastBounds = AABB( // TODO - Need to cache this; perhaps encasulate within a "spherecast" class to be passed through these functions
Vector3(KRMIN(v0.x, v1.x) - radius, KRMIN(v0.y, v1.y) - radius, KRMIN(v0.z, v1.z) - radius),
Vector3(KRMAX(v0.x, v1.x) + radius, KRMAX(v0.y, v1.y) + radius, KRMAX(v0.z, v1.z) + radius)
);
if(getBounds().intersects(sphereCastBounds)) {
if(m_models[0]->sphereCast(getModelMatrix(), v0, v1, radius, hitinfo)) {
hitinfo = KRHitInfo(hitinfo.getPosition(), hitinfo.getNormal(), hitinfo.getDistance(), this);
return true;
}
}
}
}
return false;
}
unsigned int KRCollider::getLayerMask()
{
return m_layer_mask;
}
void KRCollider::setLayerMask(unsigned int layer_mask)
{
m_layer_mask = layer_mask;
}
float KRCollider::getAudioOcclusion()
{
return m_audio_occlusion;
}
void KRCollider::setAudioOcclusion(float audio_occlusion)
{
m_audio_occlusion = audio_occlusion;
}
void KRCollider::render(KRCamera *pCamera, std::vector<KRPointLight *> &point_lights, std::vector<KRDirectionalLight *> &directional_lights, std::vector<KRSpotLight *>&spot_lights, const KRViewport &viewport, KRNode::RenderPass renderPass)
{
if(m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
KRNode::render(pCamera, point_lights, directional_lights, spot_lights, viewport, renderPass);
if(renderPass == KRNode::RENDER_PASS_FORWARD_TRANSPARENT && pCamera->settings.debug_display == KRRenderSettings::KRENGINE_DEBUG_DISPLAY_COLLIDERS) {
loadModel();
if(m_models.size()) {
GL_PUSH_GROUP_MARKER("Debug Overlays");
KRShader *pShader = getContext().getShaderManager()->getShader("visualize_overlay", pCamera, point_lights, directional_lights, spot_lights, 0, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, renderPass);
if(getContext().getShaderManager()->selectShader(*pCamera, pShader, viewport, getModelMatrix(), point_lights, directional_lights, spot_lights, 0, renderPass, Vector3::Zero(), 0.0f, Vector4::Zero())) {
// Enable additive blending
GLDEBUG(glEnable(GL_BLEND));
GLDEBUG(glBlendFunc(GL_ONE, GL_ONE));
// Disable z-buffer write
GLDEBUG(glDepthMask(GL_FALSE));
// Enable z-buffer test
GLDEBUG(glEnable(GL_DEPTH_TEST));
GLDEBUG(glDepthFunc(GL_LEQUAL));
GLDEBUG(glDepthRangef(0.0, 1.0));
for(int i=0; i < m_models[0]->getSubmeshCount(); i++) {
m_models[0]->renderSubmesh(i, renderPass, getName(), "visualize_overlay", 1.0f);
}
// Enable alpha blending
GLDEBUG(glEnable(GL_BLEND));
GLDEBUG(glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA));
}
GL_POP_GROUP_MARKER;
}
}
}