Files
kraken/KREngine/KREngine/Classes/KRInstance.cpp
kearwood 917c4221ea Added debugging macro for GL calls
Activated octree culling logic as a default
Wide spread bug fixes related to occlusion culling and GPU resource management
Implemented logic to automatically enable alpha blending for materials that do not contain an alpha blending statement but have a material-level opacity value set less than 1.0
Extended the krobject file format to 256 characters for material names.
Added logic to prevent exported krobject files from being corrupted when long material names are used.

--HG--
extra : convert_revision : svn%3A7752d6cf-9f14-4ad2-affc-04f1e67b81a5/trunk%4096
2012-09-13 20:09:19 +00:00

200 lines
7.2 KiB
C++

//
// KRInstance.cpp
// KREngine
//
// Copyright 2012 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include <iostream>
#import "KRInstance.h"
#import "KRContext.h"
#import "KRMesh.h"
#include <assert.h>
KRInstance::KRInstance(KRScene &scene, std::string instance_name, std::string model_name, std::string light_map) : KRNode(scene, instance_name) {
m_lightMap = light_map;
m_pLightMap = NULL;
m_pModel = NULL;
m_model_name = model_name;
}
KRInstance::~KRInstance() {
}
std::string KRInstance::getElementName() {
return "mesh";
}
tinyxml2::XMLElement *KRInstance::saveXML( tinyxml2::XMLNode *parent)
{
tinyxml2::XMLElement *e = KRNode::saveXML(parent);
e->SetAttribute("mesh_name", m_model_name.c_str());
e->SetAttribute("light_map", m_lightMap.c_str());
return e;
}
KRMat4 &KRInstance::getModelMatrix() {
calcModelMatrix();
return m_modelMatrix;
}
void KRInstance::loadModel() {
if(m_pModel == NULL) {
m_pModel = m_pContext->getModelManager()->getModel(m_model_name.c_str());
}
}
#if TARGET_OS_IPHONE
void KRInstance::render(KRCamera *pCamera, KRContext *pContext, KRBoundingVolume &frustrumVolume, KRMat4 &viewMatrix, KRVector3 &cameraPosition, KRVector3 &lightDirection, KRMat4 *pShadowMatrices, GLuint *shadowDepthTextures, int cShadowBuffers, KRNode::RenderPass renderPass) {
calcModelMatrix();
KRNode::render(pCamera, pContext, frustrumVolume, viewMatrix, cameraPosition, lightDirection, pShadowMatrices, shadowDepthTextures, cShadowBuffers, renderPass);
if(renderPass != KRNode::RENDER_PASS_DEFERRED_LIGHTS && (renderPass != KRNode::RENDER_PASS_FORWARD_TRANSPARENT || this->hasTransparency()) && renderPass != KRNode::RENDER_PASS_FLARES) {
// Don't render meshes on second pass of the deferred lighting renderer, as only lights will be applied
loadModel();
KRMat4 projectionMatrix;
if(renderPass != KRNode::RENDER_PASS_SHADOWMAP) {
projectionMatrix = pCamera->getProjectionMatrix();
}
if(m_pModel != NULL && (getExtents(pContext).test_intersect(frustrumVolume) || renderPass == RENDER_PASS_SHADOWMAP)) {
//if(m_pModel != NULL && (getBounds().visible(viewMatrix * projectionMatrix) || renderPass == RENDER_PASS_SHADOWMAP)) {
if(m_pLightMap == NULL && m_lightMap.size()) {
m_pLightMap = pContext->getTextureManager()->getTexture(m_lightMap.c_str());
}
if(cShadowBuffers == 0 && m_pLightMap && pCamera->bEnableLightMap && renderPass != RENDER_PASS_SHADOWMAP) {
m_pContext->getTextureManager()->selectTexture(3, m_pLightMap);
}
KRMat4 mvpmatrix = m_modelMatrix * viewMatrix * projectionMatrix;
KRMat4 matModelToView = viewMatrix * m_modelMatrix;
matModelToView.transpose();
matModelToView.invert();
// Transform location of camera to object space for calculation of specular halfVec
KRMat4 inverseModelMatrix = m_modelMatrix;
inverseModelMatrix.invert();
KRVector3 cameraPosObject = KRMat4::Dot(inverseModelMatrix, cameraPosition);
KRVector3 lightDirObject = KRMat4::Dot(inverseModelMatrix, lightDirection);
m_pModel->render(pCamera, pContext, matModelToView, mvpmatrix, cameraPosObject, lightDirection, pShadowMatrices, shadowDepthTextures, cShadowBuffers, m_pLightMap, renderPass);
}
}
}
#endif
void KRInstance::calcExtents(KRContext *pContext)
{
calcModelMatrix();
KRNode::calcExtents(pContext);
loadModel();
KRMesh *pMesh = m_pModel->getMesh();
KRBoundingVolume mesh_bounds = KRBoundingVolume(pMesh->getMinPoint(), pMesh->getMaxPoint(), m_modelMatrix);
if(m_pExtents) {
*m_pExtents = m_pExtents->get_union(mesh_bounds);
} else {
m_pExtents = new KRBoundingVolume(mesh_bounds);
}
}
bool KRInstance::hasTransparency() {
if(m_pModel) {
return m_pModel->hasTransparency();
} else {
return false;
}
}
KRAABB KRInstance::getBounds() {
calcModelMatrix();
loadModel();
KRMesh *pMesh = m_pModel->getMesh();
KRVector3 meshMin = pMesh->getMinPoint();
KRVector3 meshMax = pMesh->getMaxPoint();
KRVector3 min, max;
for(int iCorner=0; iCorner < 8; iCorner++) {
KRVector3 cornerVertex = KRVector3(
(iCorner & 1) == 0 ? meshMin.x : meshMax.x,
(iCorner & 2) == 0 ? meshMin.y : meshMax.y,
(iCorner & 4) == 0 ? meshMin.z : meshMax.z);
cornerVertex = KRMat4::Dot(m_modelMatrix, cornerVertex);
if(iCorner == 0) {
// Prime with first point
min = cornerVertex;
max = cornerVertex;
} else {
if(cornerVertex.x < min.x) {
min.x = cornerVertex.x;
}
if(cornerVertex.y < min.y) {
min.y = cornerVertex.y;
}
if(cornerVertex.z < min.z) {
min.z = cornerVertex.z;
}
if(cornerVertex.x > max.x) {
max.x = cornerVertex.x;
}
if(cornerVertex.y > max.y) {
max.y = cornerVertex.y;
}
if(cornerVertex.z > max.z) {
max.z = cornerVertex.z;
}
}
}
return KRAABB(min, max);
}
void KRInstance::calcModelMatrix()
{
m_modelMatrix = KRMat4();
// m_modelMatrix.scale(m_localScale);
// m_modelMatrix.rotate(m_localRotation.x, X_AXIS);
// m_modelMatrix.rotate(m_localRotation.y, Y_AXIS);
// m_modelMatrix.rotate(m_localRotation.z, Z_AXIS);
// m_modelMatrix.translate(m_localTranslation);
}