Files
kraken/KREngine/KREngine/Classes/KRModelManager.cpp

333 lines
13 KiB
C++

//
// KRModelManager.cpp
// KREngine
//
// Copyright 2012 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KRModelManager.h"
#include <assert.h>
#import "KRModel.h"
KRModelManager::KRModelManager(KRContext &context) : KRContextObject(context) {
m_currentVBO.vbo_handle = 0;
m_currentVBO.vao_handle = 0;
m_currentVBO.data = NULL;
m_vboMemUsed = 0;
m_randomParticleVertexData = NULL;
m_volumetricLightingVertexData = NULL;
}
KRModelManager::~KRModelManager() {
for(std::multimap<std::string, KRModel *>::iterator itr = m_models.begin(); itr != m_models.end(); ++itr){
delete (*itr).second;
}
m_models.empty();
if(m_randomParticleVertexData != NULL) delete m_randomParticleVertexData;
if(m_volumetricLightingVertexData != NULL) delete m_volumetricLightingVertexData;
}
KRModel *KRModelManager::loadModel(const char *szName, KRDataBlock *pData) {
std::string lowerName = szName;
std::transform(lowerName.begin(), lowerName.end(),
lowerName.begin(), ::tolower);
KRModel *pModel = new KRModel(*m_pContext, lowerName, pData);
m_models.insert(std::pair<std::string, KRModel *>(pModel->getLODBaseName(), pModel));
return pModel;
}
std::vector<KRModel *> KRModelManager::getModel(const char *szName) {
std::string lowerName = szName;
std::transform(lowerName.begin(), lowerName.end(),
lowerName.begin(), ::tolower);
std::vector<KRModel *> matching_models;
std::pair<std::multimap<std::string, KRModel *>::iterator, std::multimap<std::string, KRModel *>::iterator> range = m_models.equal_range(lowerName);
for(std::multimap<std::string, KRModel *>::iterator itr_match = range.first; itr_match != range.second; itr_match++) {
matching_models.push_back(itr_match->second);
}
std::sort(matching_models.begin(), matching_models.end(), KRModel::lod_sort_predicate);
if(matching_models.size() == 0) {
fprintf(stderr, "ERROR: Model not found: %s\n", lowerName.c_str());
}
return matching_models;
}
std::multimap<std::string, KRModel *> KRModelManager::getModels() {
return m_models;
}
void KRModelManager::unbindVBO() {
if(m_currentVBO.data != NULL) {
GLDEBUG(glBindBuffer(GL_ARRAY_BUFFER, 0));
m_currentVBO.size = 0;
m_currentVBO.data = NULL;
m_currentVBO.vbo_handle = -1;
m_currentVBO.vao_handle = -1;
}
}
void KRModelManager::bindVBO(GLvoid *data, GLsizeiptr size, bool enable_vertex, bool enable_normal, bool enable_tangent, bool enable_uva, bool enable_uvb) {
if(m_currentVBO.data != data || m_currentVBO.size != size) {
if(m_vbosActive.find(data) != m_vbosActive.end()) {
m_currentVBO = m_vbosActive[data];
#if GL_OES_vertex_array_object
GLDEBUG(glBindVertexArrayOES(m_currentVBO.vao_handle));
#else
GLDEBUG(glBindBuffer(GL_ARRAY_BUFFER, m_currentVBO.vbo_handle));
configureAttribs(enable_vertex, enable_normal, enable_tangent, enable_uva, enable_uvb);
#endif
} else if(m_vbosPool.find(data) != m_vbosPool.end()) {
m_currentVBO = m_vbosPool[data];
m_vbosPool.erase(data);
m_vbosActive[data] = m_currentVBO;
#if GL_OES_vertex_array_object
GLDEBUG(glBindVertexArrayOES(m_currentVBO.vao_handle));
#else
GLDEBUG(glBindBuffer(GL_ARRAY_BUFFER, m_currentVBO.vbo_handle));
configureAttribs(enable_vertex, enable_normal, enable_tangent, enable_uva, enable_uvb);
#endif
} else {
while(m_vbosPool.size() + m_vbosActive.size() + 1 >= KRContext::KRENGINE_MAX_VBO_HANDLES || m_vboMemUsed + size >= KRContext::KRENGINE_MAX_VBO_MEM) {
if(m_vbosPool.empty()) {
fprintf(stderr, "flushBuffers due to VBO exhaustion...\n");
m_pContext->rotateBuffers(false);
}
std::map<GLvoid *, vbo_info_type>::iterator first_itr = m_vbosPool.begin();
vbo_info_type firstVBO = first_itr->second;
#if GL_OES_vertex_array_object
GLDEBUG(glDeleteVertexArraysOES(1, &firstVBO.vao_handle));
#endif
GLDEBUG(glDeleteBuffers(1, &firstVBO.vbo_handle));
m_vboMemUsed -= firstVBO.size;
m_vbosPool.erase(first_itr);
fprintf(stderr, "VBO Swapping...\n");
}
m_currentVBO.vao_handle = -1;
m_currentVBO.vbo_handle = -1;
GLDEBUG(glGenBuffers(1, &m_currentVBO.vbo_handle));
#if GL_OES_vertex_array_object
GLDEBUG(glGenVertexArraysOES(1, &m_currentVBO.vao_handle));
GLDEBUG(glBindVertexArrayOES(m_currentVBO.vao_handle));
#endif
GLDEBUG(glBindBuffer(GL_ARRAY_BUFFER, m_currentVBO.vbo_handle));
GLDEBUG(glBufferData(GL_ARRAY_BUFFER, size, data, GL_STATIC_DRAW));
m_vboMemUsed += size;
configureAttribs(enable_vertex, enable_normal, enable_tangent, enable_uva, enable_uvb);
m_currentVBO.size = size;
m_currentVBO.data = data;
m_vbosActive[data] = m_currentVBO;
}
}
}
void KRModelManager::configureAttribs(bool enable_vertex, bool enable_normal, bool enable_tangent, bool enable_uva, bool enable_uvb)
{
if(enable_vertex) {
GLDEBUG(glEnableVertexAttribArray(KRShader::KRENGINE_ATTRIB_VERTEX));
} else {
GLDEBUG(glDisableVertexAttribArray(KRShader::KRENGINE_ATTRIB_VERTEX));
}
if(enable_normal) {
GLDEBUG(glEnableVertexAttribArray(KRShader::KRENGINE_ATTRIB_NORMAL));
} else {
GLDEBUG(glDisableVertexAttribArray(KRShader::KRENGINE_ATTRIB_NORMAL));
}
if(enable_tangent) {
GLDEBUG(glEnableVertexAttribArray(KRShader::KRENGINE_ATTRIB_TANGENT));
} else {
GLDEBUG(glDisableVertexAttribArray(KRShader::KRENGINE_ATTRIB_TANGENT));
}
if(enable_uva) {
GLDEBUG(glEnableVertexAttribArray(KRShader::KRENGINE_ATTRIB_TEXUVA));
} else {
GLDEBUG(glDisableVertexAttribArray(KRShader::KRENGINE_ATTRIB_TEXUVA));
}
if(enable_uvb) {
GLDEBUG(glEnableVertexAttribArray(KRShader::KRENGINE_ATTRIB_TEXUVB));
} else {
GLDEBUG(glDisableVertexAttribArray(KRShader::KRENGINE_ATTRIB_TEXUVB));
}
int data_size = 0;
if(enable_vertex) {
data_size += sizeof(KRModel::KRVector3D);
}
if(enable_normal) {
data_size += sizeof(KRModel::KRVector3D);
}
if(enable_tangent) {
data_size += sizeof(KRModel::KRVector3D);
}
if(enable_uva) {
data_size += sizeof(KRModel::TexCoord);
}
if(enable_uvb) {
data_size += sizeof(KRModel::TexCoord);
}
int offset = 0;
if(enable_vertex) {
GLDEBUG(glVertexAttribPointer(KRShader::KRENGINE_ATTRIB_VERTEX, 3, GL_FLOAT, 0, data_size, BUFFER_OFFSET(offset)));
offset += sizeof(KRModel::KRVector3D);
}
if(enable_normal) {
GLDEBUG(glVertexAttribPointer(KRShader::KRENGINE_ATTRIB_NORMAL, 3, GL_FLOAT, 0, data_size, BUFFER_OFFSET(offset)));
offset += sizeof(KRModel::KRVector3D);
}
if(enable_tangent) {
GLDEBUG(glVertexAttribPointer(KRShader::KRENGINE_ATTRIB_TANGENT, 3, GL_FLOAT, 0, data_size, BUFFER_OFFSET(offset)));
offset += sizeof(KRModel::KRVector3D);
}
if(enable_uva) {
GLDEBUG(glVertexAttribPointer(KRShader::KRENGINE_ATTRIB_TEXUVA, 2, GL_FLOAT, 0, data_size, BUFFER_OFFSET(offset)));
offset += sizeof(KRModel::TexCoord);
}
if(enable_uvb) {
GLDEBUG(glVertexAttribPointer(KRShader::KRENGINE_ATTRIB_TEXUVB, 2, GL_FLOAT, 0, data_size, BUFFER_OFFSET(offset)));
offset += sizeof(KRModel::TexCoord);
}
}
long KRModelManager::getMemUsed()
{
return m_vboMemUsed;
}
void KRModelManager::rotateBuffers(bool new_frame)
{
m_vbosPool.insert(m_vbosActive.begin(), m_vbosActive.end());
m_vbosActive.clear();
if(m_currentVBO.data != NULL) {
// Ensure that the currently active VBO does not get flushed to free memory
m_vbosPool.erase(m_currentVBO.data);
m_vbosActive[m_currentVBO.data] = m_currentVBO;
}
}
KRModelManager::VolumetricLightingVertexData *KRModelManager::getVolumetricLightingVertexes()
{
if(m_volumetricLightingVertexData == NULL) {
m_volumetricLightingVertexData = (VolumetricLightingVertexData *)malloc(sizeof(VolumetricLightingVertexData) * MAX_VOLUMETRIC_PLANES * 6);
int iVertex=0;
for(int iPlane=0; iPlane < MAX_VOLUMETRIC_PLANES; iPlane++) {
m_volumetricLightingVertexData[iVertex].vertex.x = -1.0f;
m_volumetricLightingVertexData[iVertex].vertex.y = -1.0f;
m_volumetricLightingVertexData[iVertex].vertex.z = iPlane;
iVertex++;
m_volumetricLightingVertexData[iVertex].vertex.x = 1.0f;
m_volumetricLightingVertexData[iVertex].vertex.y = -1.0f;
m_volumetricLightingVertexData[iVertex].vertex.z = iPlane;
iVertex++;
m_volumetricLightingVertexData[iVertex].vertex.x = -1.0f;
m_volumetricLightingVertexData[iVertex].vertex.y = 1.0f;
m_volumetricLightingVertexData[iVertex].vertex.z = iPlane;
iVertex++;
m_volumetricLightingVertexData[iVertex].vertex.x = -1.0f;
m_volumetricLightingVertexData[iVertex].vertex.y = 1.0f;
m_volumetricLightingVertexData[iVertex].vertex.z = iPlane;
iVertex++;
m_volumetricLightingVertexData[iVertex].vertex.x = 1.0f;
m_volumetricLightingVertexData[iVertex].vertex.y = -1.0f;
m_volumetricLightingVertexData[iVertex].vertex.z = iPlane;
iVertex++;
m_volumetricLightingVertexData[iVertex].vertex.x = 1.0f;
m_volumetricLightingVertexData[iVertex].vertex.y = 1.0f;
m_volumetricLightingVertexData[iVertex].vertex.z = iPlane;
iVertex++;
// -1.0f, -1.0f,
// 1.0f, -1.0f,
// -1.0f, 1.0f,
// 1.0f, 1.0f,
}
}
return m_volumetricLightingVertexData;
}
KRModelManager::RandomParticleVertexData *KRModelManager::getRandomParticles()
{
const int MAX_PARTICLES=500000;
if(m_randomParticleVertexData == NULL) {
m_randomParticleVertexData = (RandomParticleVertexData *)malloc(sizeof(RandomParticleVertexData) * MAX_PARTICLES * 3);
int iVertex=0;
for(int iParticle=0; iParticle < MAX_PARTICLES; iParticle++) {
m_randomParticleVertexData[iVertex].vertex.x = (float)(arc4random() % 2000) / 1000.0f - 1.0f;
m_randomParticleVertexData[iVertex].vertex.y = (float)(arc4random() % 2000) / 1000.0f - 1.0f;
m_randomParticleVertexData[iVertex].vertex.z = (float)(arc4random() % 2000) / 1000.0f - 1.0f;
m_randomParticleVertexData[iVertex].uva.u = 0.0f;
m_randomParticleVertexData[iVertex].uva.v = 0.0f;
iVertex++;
m_randomParticleVertexData[iVertex].vertex.x = m_randomParticleVertexData[iVertex-1].vertex.x;
m_randomParticleVertexData[iVertex].vertex.y = m_randomParticleVertexData[iVertex-1].vertex.y;
m_randomParticleVertexData[iVertex].vertex.z = m_randomParticleVertexData[iVertex-1].vertex.z;
m_randomParticleVertexData[iVertex].uva.u = 1.0f;
m_randomParticleVertexData[iVertex].uva.v = 0.0f;
iVertex++;
m_randomParticleVertexData[iVertex].vertex.x = m_randomParticleVertexData[iVertex-1].vertex.x;
m_randomParticleVertexData[iVertex].vertex.y = m_randomParticleVertexData[iVertex-1].vertex.y;
m_randomParticleVertexData[iVertex].vertex.z = m_randomParticleVertexData[iVertex-1].vertex.z;
m_randomParticleVertexData[iVertex].uva.u = 0.5f;
m_randomParticleVertexData[iVertex].uva.v = 1.0f;
iVertex++;
}
}
return m_randomParticleVertexData;
}