Files
kraken/KREngine/kraken/KRShader.cpp
Kearwood Gilbert a23b39a178 On-screen Profiler / Debug visualizations in progress
Fixed a bug that caused framerate to drop drastically by executing an additional render pass.
2013-03-21 19:58:35 -07:00

460 lines
23 KiB
C++

//
// KRShader.cpp
// KREngine
//
// Copyright 2012 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KRShader.h"
#include "assert.h"
#include "KRLight.h"
#include "KRDirectionalLight.h"
#include "KRSpotLight.h"
#include "KRPointLight.h"
const char *KRShader::KRENGINE_UNIFORM_NAMES[] = {
"material_ambient", // KRENGINE_UNIFORM_MATERIAL_AMBIENT
"material_diffuse", // KRENGINE_UNIFORM_MATERIAL_DIFFUSE
"material_specular", // KRENGINE_UNIFORM_MATERIAL_SPECULAR
"material_reflection", // KRENGINE_UNIFORM_MATERIAL_REFLECTION
"material_alpha", // KRENGINE_UNIFORM_MATERIAL_ALPHA
"material_shininess", // KRENGINE_UNIFORM_MATERIAL_SHININESS
"light_position", // KRENGINE_UNIFORM_LIGHT_POSITION
"light_direction_model_space", // KRENGINE_UNIFORM_LIGHT_DIRECTION_MODEL_SPACE
"light_direction_view_space", // KRENGINE_UNIFORM_LIGHT_DIRECTION_VIEW_SPACE
"light_color", // KRENGINE_UNIFORM_LIGHT_COLOR
"light_decay_start", // KRENGINE_UNIFORM_LIGHT_DECAY_START
"light_cutoff", // KRENGINE_UNIFORM_LIGHT_CUTOFF
"light_intensity", // KRENGINE_UNIFORM_LIGHT_INTENSITY
"flare_size", // KRENGINE_UNIFORM_FLARE_SIZE
"view_space_model_origin", // KRENGINE_UNIFORM_VIEW_SPACE_MODEL_ORIGIN
"mvp_matrix", // KRENGINE_UNIFORM_MVP
"inv_projection_matrix", // KRENGINE_UNIFORM_INVP
"inv_mvp_matrix", // KRENGINE_UNIFORM_INVMVP
"inv_mvp_matrix_no_translate", // KRENGINE_UNIFORM_INVMVP_NO_TRANSLATE
"model_view_inverse_transpose_matrix", // KRENGINE_UNIFORM_MODEL_VIEW_INVERSE_TRANSPOSE
"model_inverse_transpose_matrix", // KRENGINE_UNIFORM_MODEL_INVERSE_TRANSPOSE
"model_view_matrix", // KRENGINE_UNIFORM_MODEL_VIEW
"model_matrix", // KRENGINE_UNIFORM_MODEL_MATRIX
"projection_matrix", // KRENGINE_UNIFORM_PROJECTION_MATRIX
"camera_position_model_space", // KRENGINE_UNIFORM_CAMERAPOS_MODEL_SPACE
"viewport", // KRENGINE_UNIFORM_VIEWPORT
"diffuseTexture", // KRENGINE_UNIFORM_DIFFUSETEXTURE
"specularTexture", // KRENGINE_UNIFORM_SPECULARTEXTURE
"reflectionCubeTexture", // KRENGINE_UNIFORM_REFLECTIONCUBETEXTURE
"reflectionTexture", // KRENGINE_UNIFORM_REFLECTIONTEXTURE
"normalTexture", // KRENGINE_UNIFORM_NORMALTEXTURE
"diffuseTexture_Scale", // KRENGINE_UNIFORM_DIFFUSETEXTURE_SCALE
"specularTexture_Scale", // KRENGINE_UNIFORM_SPECULARTEXTURE_SCALE
"reflectionTexture_Scale", // KRENGINE_UNIFORM_REFLECTIONTEXTURE_SCALE
"normalTexture_Scale", // KRENGINE_UNIFORM_NORMALTEXTURE_SCALE
"normalTexture_Scale", // KRENGINE_UNIFORM_AMBIENTTEXTURE_SCALE
"diffuseTexture_Offset", // KRENGINE_UNIFORM_DIFFUSETEXTURE_OFFSET
"specularTexture_Offset", // KRENGINE_UNIFORM_SPECULARTEXTURE_OFFSET
"reflectionTexture_Offset", // KRENGINE_UNIFORM_REFLECTIONTEXTURE_OFFSET
"normalTexture_Offset", // KRENGINE_UNIFORM_NORMALTEXTURE_OFFSET
"ambientTexture_Offset", // KRENGINE_UNIFORM_AMBIENTTEXTURE_OFFSET
"shadow_mvp1", // KRENGINE_UNIFORM_SHADOWMVP1
"shadow_mvp2", // KRENGINE_UNIFORM_SHADOWMVP2
"shadow_mvp3", // KRENGINE_UNIFORM_SHADOWMVP3
"shadowTexture1", // KRENGINE_UNIFORM_SHADOWTEXTURE1
"shadowTexture2", // KRENGINE_UNIFORM_SHADOWTEXTURE2
"shadowTexture3", // KRENGINE_UNIFORM_SHADOWTEXTURE3
"lightmapTexture", // KRENGINE_UNIFORM_LIGHTMAPTEXTURE
"gbuffer_frame", // KRENGINE_UNIFORM_GBUFFER_FRAME
"gbuffer_depth", // KRENGINE_UNIFORM_GBUFFER_DEPTH
"depthFrame", // KRENGINE_UNIFORM_DEPTH_FRAME
"volumetricEnvironmentFrame", // KRENGINE_UNIFORM_VOLUMETRIC_ENVIRONMENT_FRAME
"renderFrame", // KRENGINE_UNIFORM_RENDER_FRAME
"time_absolute", // KRENGINE_UNIFORM_ABSOLUTE_TIME
"fog_near", // KRENGINE_UNIFORM_FOG_NEAR
"fog_far", // KRENGINE_UNIFORM_FOG_FAR
"fog_density", // KRENGINE_UNIFORM_FOG_DENSITY
"fog_color", // KRENGINE_UNIFORM_FOG_COLOR
"fog_scale", // KRENGINE_UNIFORM_FOG_SCALE
"fog_density_premultiplied_exponential", // KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_EXPONENTIAL
"fog_density_premultiplied_squared", // KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_SQUARED
"slice_depth_scale", // KRENGINE_UNIFORM_SLICE_DEPTH_SCALE
"particle_origin", // KRENGINE_UNIFORM_PARTICLE_ORIGIN
"bone_transforms" // KRENGINE_UNIFORM_BONE_TRANSFORMS
};
KRShader::KRShader(KRContext &context, char *szKey, std::string options, std::string vertShaderSource, const std::string fragShaderSource) : KRContextObject(context)
{
strcpy(m_szKey, szKey);
m_iProgram = 0;
GLuint vertexShader = 0, fragShader = 0;
try {
const GLchar *vertSource[2] = {options.c_str(), vertShaderSource.c_str()};
const GLchar *fragSource[2] = {options.c_str(), fragShaderSource.c_str()};
// Create shader program.
GLDEBUG(m_iProgram = glCreateProgram());
// Create and compile vertex shader.
GLDEBUG(vertexShader = glCreateShader(GL_VERTEX_SHADER));
GLDEBUG(glShaderSource(vertexShader, 2, vertSource, NULL));
GLDEBUG(glCompileShader(vertexShader));
// Report any compile issues to stderr
GLint logLength;
GLDEBUG(glGetShaderiv(vertexShader, GL_INFO_LOG_LENGTH, &logLength));
if (logLength > 0) {
GLchar *log = (GLchar *)malloc(logLength);
assert(log != NULL);
GLDEBUG(glGetShaderInfoLog(vertexShader, logLength, &logLength, log));
fprintf(stderr, "KREngine - Failed to compile vertex shader: %s\nShader compile log:\n%s", szKey, log);
free(log);
}
// Create and compile vertex shader.
GLDEBUG(fragShader = glCreateShader(GL_FRAGMENT_SHADER));
GLDEBUG(glShaderSource(fragShader, 2, fragSource, NULL));
GLDEBUG(glCompileShader(fragShader));
// Report any compile issues to stderr
GLDEBUG(glGetShaderiv(fragShader, GL_INFO_LOG_LENGTH, &logLength));
if (logLength > 0) {
GLchar *log = (GLchar *)malloc(logLength);
assert(log != NULL);
GLDEBUG(glGetShaderInfoLog(fragShader, logLength, &logLength, log));
fprintf(stderr, "KREngine - Failed to compile fragment shader: %s\nShader compile log:\n%s", szKey, log);
free(log);
}
// Attach vertex shader to program.
GLDEBUG(glAttachShader(m_iProgram, vertexShader));
// Attach fragment shader to program.
GLDEBUG(glAttachShader(m_iProgram, fragShader));
// Bind attribute locations.
// This needs to be done prior to linking.
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_VERTEX, "vertex_position"));
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_NORMAL, "vertex_normal"));
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_TANGENT, "vertex_tangent"));
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_TEXUVA, "vertex_uv"));
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_TEXUVB, "vertex_lightmap_uv"));
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_BONEINDEXES, "bone_indexes"));
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_BONEWEIGHTS, "bone_weights"));
// Link program.
GLDEBUG(glLinkProgram(m_iProgram));
GLint link_success = GL_FALSE;
GLDEBUG(glGetProgramiv(m_iProgram, GL_LINK_STATUS, &link_success));
if(link_success != GL_TRUE) {
// Report any linking issues to stderr
fprintf(stderr, "KREngine - Failed to link shader program: %s\n", szKey);
GLDEBUG(glGetProgramiv(m_iProgram, GL_INFO_LOG_LENGTH, &logLength));
if (logLength > 0)
{
GLchar *log = (GLchar *)malloc(logLength);
assert(log != NULL);
GLDEBUG(glGetProgramInfoLog(m_iProgram, logLength, &logLength, log));
fprintf(stderr, "Program link log:\n%s", log);
free(log);
}
GLDEBUG(glDeleteProgram(m_iProgram));
m_iProgram = 0;
} else {
// Get uniform locations
for(int i=0; i < KRENGINE_NUM_UNIFORMS; i++ ){
GLDEBUG(m_uniforms[i] = glGetUniformLocation(m_iProgram, KRENGINE_UNIFORM_NAMES[i]));
}
}
} catch(...) {
if(vertexShader) {
GLDEBUG(glDeleteShader(vertexShader));
vertexShader = 0;
}
if(fragShader) {
GLDEBUG(glDeleteShader(fragShader));
fragShader = 0;
}
if(m_iProgram) {
GLDEBUG(glDeleteProgram(m_iProgram));
m_iProgram = 0;
}
}
// Release vertex and fragment shaders.
if (vertexShader) {
GLDEBUG(glDeleteShader(vertexShader));
}
if (fragShader) {
GLDEBUG(glDeleteShader(fragShader));
}
}
KRShader::~KRShader() {
if(m_iProgram) {
GLDEBUG(glDeleteProgram(m_iProgram));
}
}
bool KRShader::bind(KRCamera &camera, const KRViewport &viewport, const KRMat4 &matModel, const std::vector<KRLight *> &lights, const KRNode::RenderPass &renderPass) const {
if(m_iProgram == 0) {
return false;
}
GLDEBUG(glUseProgram(m_iProgram));
GLDEBUG(glUniform1f(m_uniforms[KRENGINE_UNIFORM_ABSOLUTE_TIME], getContext().getAbsoluteTime()));
int light_directional_count = 0;
int light_point_count = 0;
int light_spot_count = 0;
// TODO - Need to support multiple lights and more light types in forward rendering
if(renderPass != KRNode::RENDER_PASS_DEFERRED_LIGHTS && renderPass != KRNode::RENDER_PASS_DEFERRED_GBUFFER && renderPass != KRNode::RENDER_PASS_DEFERRED_OPAQUE && renderPass != KRNode::RENDER_PASS_GENERATE_SHADOWMAPS) {
for(std::vector<KRLight *>::const_iterator light_itr=lights.begin(); light_itr != lights.end(); light_itr++) {
KRLight *light = (*light_itr);
KRDirectionalLight *directional_light = dynamic_cast<KRDirectionalLight *>(light);
KRPointLight *point_light = dynamic_cast<KRPointLight *>(light);
KRSpotLight *spot_light = dynamic_cast<KRSpotLight *>(light);
if(directional_light) {
if(light_directional_count == 0) {
int cShadowBuffers = directional_light->getShadowBufferCount();
if(m_uniforms[KRENGINE_UNIFORM_SHADOWTEXTURE1] != -1 && cShadowBuffers > 0) {
m_pContext->getTextureManager()->selectTexture(3, NULL);
GLDEBUG(glActiveTexture(GL_TEXTURE3));
GLDEBUG(glBindTexture(GL_TEXTURE_2D, directional_light->getShadowTextures()[0]));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
}
if(m_uniforms[KRENGINE_UNIFORM_SHADOWTEXTURE2] != -1 && cShadowBuffers > 1 && camera.settings.m_cShadowBuffers > 1) {
m_pContext->getTextureManager()->selectTexture(4, NULL);
GLDEBUG(glActiveTexture(GL_TEXTURE4));
GLDEBUG(glBindTexture(GL_TEXTURE_2D, directional_light->getShadowTextures()[1]));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
}
if(m_uniforms[KRENGINE_UNIFORM_SHADOWTEXTURE3] != -1 && cShadowBuffers > 2 && camera.settings.m_cShadowBuffers > 2) {
m_pContext->getTextureManager()->selectTexture(5, NULL);
GLDEBUG(glActiveTexture(GL_TEXTURE5));
GLDEBUG(glBindTexture(GL_TEXTURE_2D, directional_light->getShadowTextures()[2]));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
}
KRMat4 matBias;
matBias.translate(1.0, 1.0, 1.0);
matBias.scale(0.5);
for(int iShadow=0; iShadow < cShadowBuffers; iShadow++) {
(matModel * directional_light->getShadowViewports()[iShadow].getViewProjectionMatrix() * matBias).setUniform(m_uniforms[KRENGINE_UNIFORM_SHADOWMVP1 + iShadow]);
}
if(m_uniforms[KRENGINE_UNIFORM_LIGHT_DIRECTION_MODEL_SPACE] != -1) {
KRMat4 inverseModelMatrix = matModel;
inverseModelMatrix.invert();
// Bind the light direction vector
KRVector3 lightDirObject = KRMat4::Dot(inverseModelMatrix, directional_light->getWorldLightDirection());
lightDirObject.normalize();
lightDirObject.setUniform(m_uniforms[KRENGINE_UNIFORM_LIGHT_DIRECTION_MODEL_SPACE]);
}
}
light_directional_count++;
}
if(point_light) {
light_point_count++;
}
if(spot_light) {
light_spot_count++;
}
}
}
if(m_uniforms[KRENGINE_UNIFORM_CAMERAPOS_MODEL_SPACE] != -1) {
KRMat4 inverseModelMatrix = matModel;
inverseModelMatrix.invert();
if(m_uniforms[KRENGINE_UNIFORM_CAMERAPOS_MODEL_SPACE] != -1) {
// Transform location of camera to object space for calculation of specular halfVec
KRVector3 cameraPosObject = KRMat4::Dot(inverseModelMatrix, viewport.getCameraPosition());
cameraPosObject.setUniform(m_uniforms[KRENGINE_UNIFORM_CAMERAPOS_MODEL_SPACE]);
}
}
if(m_uniforms[KRENGINE_UNIFORM_MVP] != -1 || m_uniforms[KRShader::KRENGINE_UNIFORM_INVMVP] != -1) {
// Bind our modelmatrix variable to be a uniform called mvpmatrix in our shaderprogram
KRMat4 mvpMatrix = matModel * viewport.getViewProjectionMatrix();
mvpMatrix.setUniform(m_uniforms[KRENGINE_UNIFORM_MVP]);
if(m_uniforms[KRShader::KRENGINE_UNIFORM_INVMVP] != -1) {
KRMat4::Invert(mvpMatrix).setUniform(m_uniforms[KRShader::KRENGINE_UNIFORM_INVMVP]);
}
}
if(m_uniforms[KRShader::KRENGINE_UNIFORM_VIEW_SPACE_MODEL_ORIGIN] != -1 || m_uniforms[KRENGINE_UNIFORM_MODEL_VIEW_INVERSE_TRANSPOSE] != -1 || m_uniforms[KRShader::KRENGINE_UNIFORM_MODEL_VIEW] != -1) {
KRMat4 matModelView = matModel * viewport.getViewMatrix();
matModelView.setUniform(m_uniforms[KRShader::KRENGINE_UNIFORM_MODEL_VIEW]);
if(m_uniforms[KRShader::KRENGINE_UNIFORM_VIEW_SPACE_MODEL_ORIGIN] != -1) {
KRVector3 view_space_model_origin = KRMat4::Dot(matModelView, KRVector3::Zero()); // Origin point of model space is the light source position. No perspective, so no w divide required
view_space_model_origin.setUniform(m_uniforms[KRShader::KRENGINE_UNIFORM_VIEW_SPACE_MODEL_ORIGIN]);
}
if(m_uniforms[KRENGINE_UNIFORM_MODEL_VIEW_INVERSE_TRANSPOSE] != -1) {
KRMat4 matModelViewInverseTranspose = matModelView;
matModelViewInverseTranspose.transpose();
matModelViewInverseTranspose.invert();
matModelViewInverseTranspose.setUniform(m_uniforms[KRENGINE_UNIFORM_MODEL_VIEW_INVERSE_TRANSPOSE]);
}
}
if(m_uniforms[KRENGINE_UNIFORM_MODEL_INVERSE_TRANSPOSE] != -1) {
KRMat4 matModelInverseTranspose = matModel;
matModelInverseTranspose.transpose();
matModelInverseTranspose.invert();
matModelInverseTranspose.setUniform(m_uniforms[KRENGINE_UNIFORM_MODEL_INVERSE_TRANSPOSE]);
}
if(m_uniforms[KRShader::KRENGINE_UNIFORM_INVP] != -1) {
viewport.getInverseProjectionMatrix().setUniform(m_uniforms[KRShader::KRENGINE_UNIFORM_INVP]);
}
if(m_uniforms[KRShader::KRENGINE_UNIFORM_INVMVP_NO_TRANSLATE] != -1) {
KRMat4 matInvMVPNoTranslate = matModel * viewport.getViewMatrix();;
// Remove the translation
matInvMVPNoTranslate.getPointer()[3] = 0;
matInvMVPNoTranslate.getPointer()[7] = 0;
matInvMVPNoTranslate.getPointer()[11] = 0;
matInvMVPNoTranslate.getPointer()[12] = 0;
matInvMVPNoTranslate.getPointer()[13] = 0;
matInvMVPNoTranslate.getPointer()[14] = 0;
matInvMVPNoTranslate.getPointer()[15] = 1.0;
matInvMVPNoTranslate = matInvMVPNoTranslate * viewport.getProjectionMatrix();
matInvMVPNoTranslate.invert();
matInvMVPNoTranslate.setUniform(m_uniforms[KRShader::KRENGINE_UNIFORM_INVMVP_NO_TRANSLATE]);
}
matModel.setUniform(m_uniforms[KRShader::KRENGINE_UNIFORM_MODEL_MATRIX]);
if(m_uniforms[KRENGINE_UNIFORM_PROJECTION_MATRIX] != -1) {
viewport.getProjectionMatrix().setUniform(m_uniforms[KRENGINE_UNIFORM_PROJECTION_MATRIX]);
}
if(m_uniforms[KRENGINE_UNIFORM_VIEWPORT] != -1) {
GLDEBUG(glUniform4f(
m_uniforms[KRENGINE_UNIFORM_VIEWPORT],
(GLfloat)0.0,
(GLfloat)0.0,
(GLfloat)viewport.getSize().x,
(GLfloat)viewport.getSize().y
));
}
// Fog parameters
GLDEBUG(glUniform1f(m_uniforms[KRENGINE_UNIFORM_FOG_NEAR], camera.settings.fog_near));
GLDEBUG(glUniform1f(m_uniforms[KRENGINE_UNIFORM_FOG_FAR], camera.settings.fog_far));
GLDEBUG(glUniform1f(m_uniforms[KRENGINE_UNIFORM_FOG_DENSITY], camera.settings.fog_density));
camera.settings.fog_color.setUniform(m_uniforms[KRENGINE_UNIFORM_FOG_COLOR]);
if(m_uniforms[KRENGINE_UNIFORM_FOG_SCALE] != -1) {
GLDEBUG(glUniform1f(m_uniforms[KRENGINE_UNIFORM_FOG_SCALE], 1.0f / (camera.settings.fog_far - camera.settings.fog_near)));
}
if(m_uniforms[KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_EXPONENTIAL] != -1) {
GLDEBUG(glUniform1f(m_uniforms[KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_EXPONENTIAL], -camera.settings.fog_density * 1.442695f)); // -fog_density / log(2)
}
if(m_uniforms[KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_SQUARED] != -1) {
GLDEBUG(glUniform1f(m_uniforms[KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_SQUARED], -camera.settings.fog_density * camera.settings.fog_density * 1.442695)); // -fog_density * fog_density / log(2)
}
// Sets the diffuseTexture variable to the first texture unit
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_DIFFUSETEXTURE], 0));
// Sets the specularTexture variable to the second texture unit
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_SPECULARTEXTURE], 1));
// Sets the normalTexture variable to the third texture unit
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_NORMALTEXTURE], 2));
// Sets the shadowTexture variable to the fourth texture unit
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_SHADOWTEXTURE1], 3));
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_SHADOWTEXTURE2], 4));
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_SHADOWTEXTURE3], 5));
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_REFLECTIONCUBETEXTURE], 4));
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_LIGHTMAPTEXTURE], 5));
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_GBUFFER_FRAME], 6));
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_GBUFFER_DEPTH], 7)); // Texture unit 7 is used for reading the depth buffer in gBuffer pass #2 and in post-processing pass
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_REFLECTIONTEXTURE], 7)); // Texture unit 7 is used for the reflection map textures in gBuffer pass #3 and when using forward rendering
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_DEPTH_FRAME], 0));
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_RENDER_FRAME], 1));
GLDEBUG(glUniform1i(m_uniforms[KRENGINE_UNIFORM_VOLUMETRIC_ENVIRONMENT_FRAME], 2));
#if defined(DEBUG)
GLint logLength;
GLint validate_status = GL_FALSE;
GLDEBUG(glValidateProgram(m_iProgram));
GLDEBUG(glGetProgramiv(m_iProgram, GL_VALIDATE_STATUS, &validate_status));
if(validate_status != GL_TRUE) {
fprintf(stderr, "KREngine - Failed to validate shader program: %s\n", m_szKey);
GLDEBUG(glGetProgramiv(m_iProgram, GL_INFO_LOG_LENGTH, &logLength));
if (logLength > 0)
{
GLchar *log = (GLchar *)malloc(logLength);
assert(log != NULL);
GLDEBUG(glGetProgramInfoLog(m_iProgram, logLength, &logLength, log));
fprintf(stderr, "Program validate log:\n%s", log);
free(log);
}
return false;
}
#endif
return true;
}
const char *KRShader::getKey() const {
return m_szKey;
}