Files
kraken/KREngine/KREngine/Classes/KRVector3.cpp
kearwood a2d85c24dd includes and header cleanup
--HG--
extra : convert_revision : svn%3A7752d6cf-9f14-4ad2-affc-04f1e67b81a5/trunk%40213
2013-01-11 03:21:19 +00:00

302 lines
7.5 KiB
C++

//
// KRVector3.cpp
// KREngine
//
// Copyright 2012 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KREngine-common.h"
#include "KRVector3.h"
//default constructor
KRVector3::KRVector3()
{
x = 0.0f;
y = 0.0f;
z = 0.0f;
}
KRVector3::KRVector3(const KRVector3 &v) {
x = v.x;
y = v.y;
z = v.z;
}
KRVector3::KRVector3(float *v) {
x = v[0];
y = v[1];
z = v[2];
}
KRVector3 KRVector3::Min() {
return KRVector3(-std::numeric_limits<float>::max());
}
KRVector3 KRVector3::Max() {
return KRVector3(std::numeric_limits<float>::max());
}
KRVector3 KRVector3::Zero() {
return KRVector3(0.0f, 0.0f, 0.0f);
}
KRVector3 KRVector3::One() {
return KRVector3(1.0f, 1.0f, 1.0f);
}
KRVector3 KRVector3::Forward() {
return KRVector3(0.0f, 0.0f, 1.0f);
}
KRVector3 KRVector3::Backward() {
return KRVector3(0.0f, 0.0f, -1.0f);
}
KRVector3 KRVector3::Up() {
return KRVector3(0.0f, 1.0f, 0.0f);
}
KRVector3 KRVector3::Down() {
return KRVector3(0.0f, -1.0f, 0.0f);
}
KRVector3 KRVector3::Left() {
return KRVector3(-1.0f, 0.0f, 0.0f);
}
KRVector3 KRVector3::Right() {
return KRVector3(1.0f, 0.0f, 0.0f);
}
KRVector3 KRVector3::Lerp(const KRVector3 &v1, const KRVector3 &v2, float d) {
return v1 + (v2 - v1) * d;
}
KRVector3 KRVector3::Slerp(const KRVector3 &v1, const KRVector3 &v2, float d) {
// From: http://keithmaggio.wordpress.com/2011/02/15/math-magician-lerp-slerp-and-nlerp/
// Dot product - the cosine of the angle between 2 vectors.
float dot = KRVector3::Dot(v1, v2);
// Clamp it to be in the range of Acos()
if(dot < -1.0f) dot = -1.0f;
if(dot > 1.0f) dot = 1.0f;
// Acos(dot) returns the angle between start and end,
// And multiplying that by percent returns the angle between
// start and the final result.
float theta = acos(dot)*d;
KRVector3 RelativeVec = v2 - v1*dot;
RelativeVec.normalize(); // Orthonormal basis
// The final result.
return ((v1*cos(theta)) + (RelativeVec*sin(theta)));
}
void KRVector3::OrthoNormalize(KRVector3 &normal, KRVector3 &tangent) {
// Gram-Schmidt Orthonormalization
normal.normalize();
KRVector3 proj = normal * Dot(tangent, normal);
tangent = tangent - proj;
tangent.normalize();
}
KRVector3::KRVector3(float v) {
x = v;
y = v;
z = v;
}
KRVector3::KRVector3(float X, float Y, float Z)
{
x = X;
y = Y;
z = Z;
}
KRVector3::~KRVector3()
{
}
KRVector3& KRVector3::operator =(const KRVector3& b) {
x = b.x;
y = b.y;
z = b.z;
return *this;
}
KRVector3 KRVector3::operator +(const KRVector3& b) const {
return KRVector3(x + b.x, y + b.y, z + b.z);
}
KRVector3 KRVector3::operator -(const KRVector3& b) const {
return KRVector3(x - b.x, y - b.y, z - b.z);
}
KRVector3 KRVector3::operator +() const {
return *this;
}
KRVector3 KRVector3::operator -() const {
return KRVector3(-x, -y, -z);
}
KRVector3 KRVector3::operator *(const float v) const {
return KRVector3(x * v, y * v, z * v);
}
KRVector3 KRVector3::operator /(const float v) const {
return KRVector3(x / v, y / v, z / v);
}
KRVector3& KRVector3::operator +=(const KRVector3& b) {
x += b.x;
y += b.y;
z += b.z;
return *this;
}
KRVector3& KRVector3::operator -=(const KRVector3& b) {
x -= b.x;
y -= b.y;
z -= b.z;
return *this;
}
KRVector3& KRVector3::operator *=(const float v) {
x *= v;
y *= v;
z *= v;
return *this;
}
KRVector3& KRVector3::operator /=(const float v) {
x /= v;
y /= v;
z /= v;
return *this;
}
bool KRVector3::operator ==(const KRVector3& b) const {
return x == b.x && y == b.y && z == b.z;
}
bool KRVector3::operator !=(const KRVector3& b) const {
return x != b.x || y != b.y || z != b.z;
}
float& KRVector3::operator[](unsigned i) {
switch(i) {
case 0:
return x;
case 1:
return y;
default:
case 2:
return z;
}
}
float KRVector3::operator[](unsigned i) const {
switch(i) {
case 0:
return x;
case 1:
return y;
case 2:
default:
return z;
}
}
float KRVector3::sqrMagnitude() const {
// calculate the square of the magnitude (useful for comparison of magnitudes without the cost of a sqrt() function)
return x * x + y * y + z * z;
}
float KRVector3::magnitude() const {
return sqrtf(x * x + y * y + z * z);
}
void KRVector3::normalize() {
float magnitude = sqrtf(x * x + y * y + z * z);
x /= magnitude;
y /= magnitude;
z /= magnitude;
}
KRVector3 KRVector3::Normalize(const KRVector3 &v) {
float magnitude = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
return KRVector3(v.x / magnitude, v.y / magnitude, v.z / magnitude);
}
KRVector3 KRVector3::Cross(const KRVector3 &v1, const KRVector3 &v2) {
return KRVector3(v1.y * v2.z - v1.z * v2.y,
v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x);
}
float KRVector3::Dot(const KRVector3 &v1, const KRVector3 &v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
bool KRVector3::operator >(const KRVector3& b) const
{
// Comparison operators are implemented to allow insertion into sorted containers such as std::set
if(x > b.x) {
return true;
} else if(x < b.x) {
return false;
} else if(y > b.y) {
return true;
} else if(y < b.y) {
return false;
} else if(z > b.z) {
return true;
} else {
return false;
}
}
bool KRVector3::operator <(const KRVector3& b) const
{
// Comparison operators are implemented to allow insertion into sorted containers such as std::set
if(x < b.x) {
return true;
} else if(x > b.x) {
return false;
} else if(y < b.y) {
return true;
} else if(y > b.y) {
return false;
} else if(z < b.z) {
return true;
} else {
return false;
}
}
void KRVector3::setUniform(GLint location) const
{
if(location != -1) GLDEBUG(glUniform3f(location, x, y, z));
}