Files
kraken/objview/Classes/krengine/KRModel.cpp
kearwood cece608881 Initial import of KREngine
--HG--
extra : convert_revision : svn%3A7752d6cf-9f14-4ad2-affc-04f1e67b81a5/trunk%404
2011-10-25 05:03:10 +00:00

616 lines
25 KiB
C++

//
// KRModel.cpp
// gldemo
//
// Created by Kearwood Gilbert on 10-09-22.
// Copyright (c) 2010 Kearwood Software. All rights reserved.
//
#import <stdint.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include "KRModel.h"
#include "KRVector3.h"
#define MAX_VBO_SIZE 65535
// MAX_VBO_SIZE must be divisible by 3 so triangles aren't split across VBO objects...
#define BUFFER_OFFSET(i) ((char *)NULL + (i))
KRModel::KRModel(std::string path, KRMaterialManager *pMaterialManager) {
m_fdPackFile = 0;
m_pPackFile = NULL;
m_iPackFileSize = 0;
m_cBuffers = 0;
m_pBuffers = NULL;
// loadWavefront(path, pMaterialManager);
loadPack(path, pMaterialManager);
}
void KRModel::loadPack(std::string path, KRMaterialManager *pMaterialManager) {
struct stat statbuf;
m_fdPackFile = open(path.c_str(), O_RDONLY);
if(m_fdPackFile >= 0) {
if(fstat(m_fdPackFile, &statbuf) >= 0) {
if ((m_pPackFile = mmap (0, statbuf.st_size, PROT_READ, MAP_SHARED, m_fdPackFile, 0)) == (caddr_t) -1) {
} else {
m_iPackFileSize = statbuf.st_size;
pack_header *pHeader = (pack_header *)m_pPackFile;
m_minx = pHeader->minx;
m_miny = pHeader->miny;
m_minz = pHeader->minz;
m_maxx = pHeader->maxx;
m_maxy = pHeader->maxy;
m_maxz = pHeader->maxz;
pack_material *pPackMaterials = (pack_material *)(pHeader+1);
for(int iMaterial=0; iMaterial < pHeader->material_count; iMaterial++) {
pack_material *pPackMaterial = pPackMaterials + iMaterial;
Material *pMaterial = new Material();
pMaterial->start_vertex = pPackMaterial->start_vertex;
pMaterial->vertex_count = pPackMaterial->vertex_count;
pMaterial->pMaterial = pMaterialManager->getMaterial(pPackMaterial->szName);
m_materials.push_back(pMaterial);
}
m_pVertexData = (VertexData *)(pPackMaterials + pHeader->material_count);
m_cBuffers = (pHeader->vertex_count + MAX_VBO_SIZE - 1) / MAX_VBO_SIZE;
m_pBuffers = new GLuint[m_cBuffers];
glGenBuffers(m_cBuffers, m_pBuffers);
for(GLsizei iBuffer=0; iBuffer < m_cBuffers; iBuffer++) {
// if(iBuffer < 30) {
GLsizei cVertexes = iBuffer < m_cBuffers - 1 ? MAX_VBO_SIZE : pHeader->vertex_count % MAX_VBO_SIZE;
glBindBuffer(GL_ARRAY_BUFFER, m_pBuffers[iBuffer]);
glBufferData(GL_ARRAY_BUFFER, sizeof(VertexData) * cVertexes, m_pVertexData + iBuffer * MAX_VBO_SIZE, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
// }
}
}
}
}
}
void KRModel::loadWavefront(std::string path, KRMaterialManager *pMaterialManager) {
const char *szPath = path.c_str();
int fdFile = 0;
int fileSize = 0;
void *pFile = NULL;
char szSymbol[16][64];
std::vector<KRMaterial *> materials;
Vertex3D *pVertices = NULL;
Vector3D *pNormals = NULL;
TexCoord *pTexCoords = NULL;
int *pFaces = NULL;
struct stat statbuf;
fdFile = open(szPath, O_RDONLY);
if(fdFile >= 0) {
if(fstat(fdFile, &statbuf) >= 0) {
if ((pFile = mmap (0, statbuf.st_size, PROT_READ, MAP_SHARED, fdFile, 0)) == (caddr_t) -1) {
} else {
fileSize = statbuf.st_size;
// Pass 1 - Get counts
int cVertices = 0;
int cNormals = 0;
int cTexCoords = 0;
int cVertexData = 0;
cVertices = 0;
int cFaces = 1;
GLint cMaterialFaceStart = 1;
// ---------
char *pScan = (char *)pFile;
char *pEnd = (char *)pFile + fileSize;
while(pScan < pEnd) {
// Scan through whitespace
while(pScan < pEnd && (*pScan == ' ' || *pScan == '\t' || *pScan == '\r' || *pScan == '\n')) {
pScan++;
}
if(*pScan == '#') {
// Line is a comment line
// Scan to the end of the line
while(pScan < pEnd && *pScan != '\r' && *pScan != '\n') {
pScan++;
}
} else {
int cSymbols = 0;
while(pScan < pEnd && *pScan != '\n' && *pScan != '\r') {
char *pDest = szSymbol[cSymbols++];
while(pScan < pEnd && *pScan != ' ' && *pScan != '\n' && *pScan != '\r') {
*pDest++ = *pScan++;
}
*pDest = '\0';
// Scan through whitespace, but don't advance to next line
while(pScan < pEnd && (*pScan == ' ' || *pScan == '\t')) {
pScan++;
}
}
if(strcmp(szSymbol[0], "v") == 0) {
// Vertex (v)
cVertices++;
} else if(strcmp(szSymbol[0], "vt") == 0) {
// Vertex Texture UV Coordinate (vt)
cTexCoords++;
} else if(strcmp(szSymbol[0], "vn") == 0) {
// Vertex Normal (vn)
cNormals++;
} else if(strcmp(szSymbol[0], "f") == 0) {
// Face (f)
int cFaceVertexes = (cSymbols - 3) * 3; // 3 vertexes per triangle. Triangles have 4 symbols. Quads have 5 symbols and generate two triangles.
cVertexData += cFaceVertexes;
cFaces += cFaceVertexes * 3 + 1; // Allocate space for count of vertices, Vertex Index, Texture Coordinate Index, and Normal Index
} else if(strcmp(szSymbol[0], "usemtl") == 0) {
// Use Material (usemtl)
if(cMaterialFaceStart - cFaces > 0) {
cFaces++;
}
materials.push_back(pMaterialManager->getMaterial(szSymbol[1]));
}
}
}
// Pass 2 - Populate vertexes and faces
Vertex3D *pVertices = (Vertex3D *)malloc(sizeof(Vertex3D) * cVertices);
Vector3D *pNormals = (Vector3D *)malloc(sizeof(Vector3D) *cNormals);
TexCoord *pTexCoords = (TexCoord *)malloc(sizeof(TexCoord) * cTexCoords);
int *pFaces = (int *)malloc(sizeof(int *) * (cFaces + 1));
Vertex3D *pVertice = pVertices;
Vector3D *pNormal = pNormals;
TexCoord *pTexCoord = pTexCoords;
int *pFace = pFaces;
int *pMaterialFaces = pFace++;
*pMaterialFaces = 0;
std::vector<KRMaterial *>::iterator material_itr = materials.begin();
// --------
pScan = (char *)pFile;
while(pScan < pEnd) {
// Scan through whitespace
while(pScan < pEnd && (*pScan == ' ' || *pScan == '\t' || *pScan == '\r' || *pScan == '\n')) {
pScan++;
}
if(*pScan == '#') {
// Line is a comment line
// Scan to the end of the line
while(pScan < pEnd && *pScan != '\r' && *pScan != '\n') {
pScan++;
}
} else {
int cSymbols = 0;
while(pScan < pEnd && *pScan != '\n' && *pScan != '\r') {
char *pDest = szSymbol[cSymbols++];
while(pScan < pEnd && *pScan != ' ' && *pScan != '\n' && *pScan != '\r') {
*pDest++ = *pScan++;
}
*pDest = '\0';
// Scan through whitespace, but don't advance to next line
while(pScan < pEnd && (*pScan == ' ' || *pScan == '\t')) {
pScan++;
}
}
if(strcmp(szSymbol[0], "v") == 0) {
// Vertex (v)
char *pChar = szSymbol[1];
pVertice -> x = strtof(pChar, &pChar);
pChar = szSymbol[2];
pVertice -> y = strtof(pChar, &pChar);
pChar = szSymbol[3];
pVertice -> z = strtof(pChar, &pChar);
pVertice++;
} else if(strcmp(szSymbol[0], "vt") == 0) {
// Vertex Texture UV Coordinate (vt)
char *pChar = szSymbol[1];
pTexCoord -> u = strtof(pChar, &pChar);
pChar = szSymbol[2];
pTexCoord -> v = strtof(pChar, &pChar);
pTexCoord++;
} else if(strcmp(szSymbol[0], "vn") == 0) {
// Vertex Normal (vn)
char *pChar = szSymbol[1];
pNormal -> x = strtof(pChar, &pChar);
pChar = szSymbol[2];
pNormal -> y = strtof(pChar, &pChar);
pChar = szSymbol[3];
pNormal -> z = strtof(pChar, &pChar);
pNormal++;
} else if(strcmp(szSymbol[0], "f") == 0) {
// Face (f)
GLint cFaceVertices = cSymbols - 1;
*pFace++ = cFaceVertices;
for(int iSymbol=1; iSymbol < cSymbols; iSymbol++) {
char *pChar = szSymbol[iSymbol];
if(*pChar == '.' || (*pChar >= '0' && *pChar <= '9')) {
*pFace++ = strtol(pChar, &pChar, 10) - 1; // Vertex Index
if(*pChar == '/') {
pChar++;
if(*pChar == '/') {
*pFace++ = -1;
} else {
*pFace++ = strtol(pChar, &pChar, 10) - 1; // Texture Coordinate Index
}
} else {
*pFace++ = -1;
}
if(*pChar == '/') {
pChar++;
if(*pChar == '/') {
*pFace++ = -1;
} else {
*pFace++ = strtol(pChar, &pChar, 10) - 1; // Normal Index
}
} else {
*pFace++ = -1;
}
while(*pChar == '/') {
pChar++;
strtol(pChar, &pChar, 10);
}
}
}
} else if(strcmp(szSymbol[0], "usemtl") == 0) {
// Use Material (usemtl)
if(pFace - pMaterialFaces > 1) {
*pMaterialFaces = pFace - pMaterialFaces - 1;
pMaterialFaces = pFace++;
}
}
}
}
*pMaterialFaces = pFace - pMaterialFaces - 1;
*pFace++ = 0;
m_pVertexData = (VertexData *)malloc(sizeof(VertexData) * cVertexData);
VertexData *pData = m_pVertexData;
int iVertex = 0;
Material *pMaterial = new Material();
pMaterial->start_vertex = iVertex;
pMaterial->vertex_count = 0;
if(material_itr < materials.end()) {
pMaterial->pMaterial = *material_itr++;
} else {
pMaterial->pMaterial = NULL;
}
m_materials.push_back(pMaterial);
pFace = pFaces;
while(*pFace != 0 && iVertex < cVertexData) {
pMaterial->start_vertex = iVertex;
int *pMaterialEndFace = pFace + *pFace++;
while(pFace < pMaterialEndFace) {
int cFaceVertexes = *pFace;
VertexData *pFirstFaceVertex = NULL;
VertexData *pPrevFaceVertex = NULL;
for(int iFaceVertex=0; iFaceVertex < cFaceVertexes; iFaceVertex++) {
if(iFaceVertex > 2) {
// There have already been 3 vertices. Now we need to split the quad into a second triangle composed of the 1st, 3rd, and 4th vertices
memcpy(pData++, pFirstFaceVertex, sizeof(VertexData));
memcpy(pData++, pPrevFaceVertex, sizeof(VertexData));
iVertex+=2;
}
Vertex3D *pVertex = pVertices + pFace[iFaceVertex*3+1];
if(iFaceVertex==0) {
pFirstFaceVertex = pData;
}
pPrevFaceVertex = pData;
pData->vertex.x = pVertex -> x;
pData->vertex.y = pVertex -> y;
pData->vertex.z = pVertex -> z;
if(pFace[iFaceVertex*3+2] >= 0) {
TexCoord *pTexCoord = pTexCoords + pFace[iFaceVertex*3+2];
pData->texcoord.u = pTexCoord -> u;
pData->texcoord.v = pTexCoord -> v;
} else {
pData->texcoord.u = 0;
pData->texcoord.v = 0;
}
if(pFace[iFaceVertex*3+3] >= 0){
Vector3D *pNormal = pNormals + pFace[iFaceVertex*3+3];
pData->normal.x = pNormal -> x;
pData->normal.y = pNormal -> y;
pData->normal.z = pNormal -> z;
} else {
pData->normal.x = 0;
pData->normal.y = 0;
pData->normal.z = 0;
}
pData++;
iVertex++;
}
pFace += cFaceVertexes * 3 + 1;
}
pMaterial->vertex_count = iVertex - pMaterial->start_vertex;
if(*pFace != 0) {
pMaterial = new Material();
pMaterial->start_vertex = iVertex;
pMaterial->vertex_count = 0;
if(material_itr < materials.end()) {
pMaterial->pMaterial = *material_itr++;
} else {
pMaterial->pMaterial = NULL;
}
m_materials.push_back(pMaterial);
}
}
}
}
}
m_minx = 0.0;
m_miny = 0.0;
m_minz = 0.0;
m_maxx = 0.0;
m_maxy = 0.0;
m_maxz = 0.0;
// Calculate surface normals and tangents
// http://www.terathon.com/code/tangent.html
// http://www.fabiensanglard.net/bumpMapping/index.php
for(std::vector<Material *>::iterator itr = m_materials.begin(); itr != m_materials.end(); itr++) {
VertexData *pStart = m_pVertexData + (*itr)->start_vertex;
VertexData *pEnd = pStart + (*itr)->vertex_count;
for(VertexData *pVertex = pStart; pVertex < pEnd; pVertex+=3) {
if(pVertex->vertex.x < m_minx) m_minx = pVertex->vertex.x;
if(pVertex->vertex.x > m_maxx) m_maxx = pVertex->vertex.x;
if(pVertex->vertex.y < m_miny) m_miny = pVertex->vertex.y;
if(pVertex->vertex.y > m_maxy) m_maxy = pVertex->vertex.y;
if(pVertex->vertex.z < m_minz) m_minz = pVertex->vertex.z;
if(pVertex->vertex.z > m_maxz) m_maxz = pVertex->vertex.z;
}
for(VertexData *pVertex = pStart; pVertex < pEnd; pVertex+=3) {
Vector3 p1(pVertex[0].vertex.x, pVertex[0].vertex.y, pVertex[0].vertex.z);
Vector3 p2(pVertex[1].vertex.x, pVertex[1].vertex.y, pVertex[1].vertex.z);
Vector3 p3(pVertex[2].vertex.x, pVertex[2].vertex.y, pVertex[2].vertex.z);
Vector3 v1 = p2 - p1;
Vector3 v2 = p3 - p1;
// -- Calculate normal --
if(pVertex->normal.x == 0 && pVertex->normal.y == 0 && pVertex->normal.z == 0) {
Vector3 normal = v1.cross( v2 );
normal.normalize();
pVertex[0].normal.x = normal.x;
pVertex[0].normal.y = normal.y;
pVertex[0].normal.z = normal.z;
pVertex[1].normal.x = normal.x;
pVertex[1].normal.y = normal.y;
pVertex[1].normal.z = normal.z;
pVertex[2].normal.x = normal.x;
pVertex[2].normal.y = normal.y;
pVertex[2].normal.z = normal.z;
}
// -- Calculate tangent --
TexCoord st1; // = pVertex[2].texcoord;
TexCoord st2; // = pVertex[1].texcoord;
st1.u = pVertex[1].texcoord.u - pVertex[0].texcoord.u;
st1.v = pVertex[1].texcoord.v - pVertex[0].texcoord.v;
st2.u = pVertex[2].texcoord.u - pVertex[0].texcoord.u;
st2.v = pVertex[2].texcoord.v - pVertex[0].texcoord.v;
double coef = 1/ (st1.u * st2.v - st2.u * st1.v);
pVertex[0].tangent.x = coef * ((v1.x * st2.v) + (v2.x * -st1.v));
pVertex[0].tangent.y = coef * ((v1.y * st2.v) + (v2.y * -st1.v));
pVertex[0].tangent.z = coef * ((v1.z * st2.v) + (v2.z * -st1.v));
Vector3 tangent(
coef * ((v1.x * st2.v) + (v2.x * -st1.v)),
coef * ((v1.y * st2.v) + (v2.y * -st1.v)),
coef * ((v1.z * st2.v) + (v2.z * -st1.v))
);
tangent.normalize();
pVertex[0].tangent.x = tangent.x;
pVertex[0].tangent.y = tangent.y;
pVertex[0].tangent.z = tangent.z;
pVertex[1].tangent.x = tangent.x;
pVertex[1].tangent.y = tangent.y;
pVertex[1].tangent.z = tangent.z;
pVertex[2].tangent.x = tangent.x;
pVertex[2].tangent.y = tangent.y;
pVertex[2].tangent.z = tangent.z;
}
}
if(pFile != NULL) {
munmap(pFile, fileSize);
}
if(fdFile != 0) {
close(fdFile);
}
if(pVertices) {
free(pVertices);
}
if(pNormals) {
free(pNormals);
}
if(pTexCoords) {
free(pTexCoords);
}
if(pFaces) {
free(pFaces);
}
}
KRModel::~KRModel() {
if(m_pPackFile != NULL) {
munmap(m_pPackFile, m_iPackFileSize);
}
if(m_fdPackFile) {
close(m_fdPackFile);
} else {
// If we didn't load a packed file, then the data was calculated at run time and malloc'ed
if(m_pVertexData != NULL) {
free(m_pVertexData);
}
}
if(m_pBuffers != NULL) {
glDeleteBuffers(m_cBuffers, m_pBuffers);
delete m_pBuffers;
}
}
void KRModel::render(GLuint program, GLuint iVertexAttrib, GLuint iNormalAttrib, GLuint iTangentAttrib, GLuint iTexCoordAttrib, KRMaterialManager *pMaterialManager) {
for(std::vector<Material *>::iterator itr = m_materials.begin(); itr != m_materials.end(); itr++) {
KRMaterial *pMaterial = (*itr)->pMaterial;
if(pMaterial != NULL) {
pMaterial->bind(program);
} else {
pMaterial = new KRMaterial();
pMaterial->bind(program);
delete pMaterial;
}
int iVertex = (*itr)->start_vertex;
int iBuffer = iVertex / MAX_VBO_SIZE;
iVertex = iVertex % MAX_VBO_SIZE;
int cVertexes = (*itr)->vertex_count;
while(cVertexes > 0) {
glBindBuffer(GL_ARRAY_BUFFER, m_pBuffers[iBuffer]);
glVertexAttribPointer(iVertexAttrib, 3, GL_FLOAT, 0, sizeof(VertexData), BUFFER_OFFSET(0));
glEnableVertexAttribArray(iVertexAttrib);
glVertexAttribPointer(iNormalAttrib, 3, GL_FLOAT, 0, sizeof(VertexData), BUFFER_OFFSET(sizeof(Vertex3D)));
glEnableVertexAttribArray(iNormalAttrib);
glVertexAttribPointer(iTangentAttrib, 3, GL_FLOAT, 0, sizeof(VertexData), BUFFER_OFFSET(sizeof(Vertex3D) + sizeof(Vector3D)));
glEnableVertexAttribArray(iTangentAttrib);
glVertexAttribPointer(iTexCoordAttrib, 2, GL_FLOAT, 0, sizeof(VertexData), BUFFER_OFFSET(sizeof(Vertex3D) + sizeof(Vector3D) * 2));
glEnableVertexAttribArray(iTexCoordAttrib);
if(iVertex + cVertexes >= MAX_VBO_SIZE) {
glDrawArrays(GL_TRIANGLES, iVertex, (MAX_VBO_SIZE - iVertex));
cVertexes -= (MAX_VBO_SIZE - iVertex);
iVertex = 0;
iBuffer++;
} else {
glDrawArrays(GL_TRIANGLES, iVertex, cVertexes);
cVertexes = 0;
}
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
}
GLfloat KRModel::getMaxDimension() {
GLfloat m = 0.0;
if(m_maxx - m_minx > m) m = m_maxx - m_minx;
if(m_maxy - m_miny > m) m = m_maxy - m_miny;
if(m_maxz - m_minz > m) m = m_maxz - m_minz;
return m;
}
GLfloat KRModel::getMinX() {
return m_minx;
}
GLfloat KRModel::getMaxX() {
return m_maxx;
}
GLfloat KRModel::getMinY() {
return m_miny;
}
GLfloat KRModel::getMaxY() {
return m_maxy;
}
GLfloat KRModel::getMinZ() {
return m_minz;
}
GLfloat KRModel::getMaxZ() {
return m_maxz;
}