Files
kraken/kraken/KRDSP_slow.cpp
2022-08-08 01:07:26 -07:00

208 lines
5.6 KiB
C++

//
// KRDSP_slow.cpp
// Kraken Engine
//
// Copyright 2022 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KRDSP.h"
#ifdef KRDSP_SLOW
#include "KREngine-common.h"
namespace KRDSP {
FFTWorkspace::FFTWorkspace()
{
sin_table = nullptr;
cos_table = nullptr;
}
FFTWorkspace::~FFTWorkspace()
{
destroy();
}
void FFTWorkspace::create(size_t length)
{
size_t size = (length / 2);
cos_table = new float[size];
sin_table = new float[size];
for (int i = 0; i < size / 2; i++) {
float a = 2.0f * (float)M_PI * i / length;
cos_table[i] = cos(a);
sin_table[i] = sin(a);
}
}
void FFTWorkspace::destroy()
{
if (sin_table) {
delete sin_table;
sin_table = nullptr;
}
if (cos_table) {
delete cos_table;
cos_table = nullptr;
}
}
void FFTForward(const FFTWorkspace& workspace, SplitComplex* src, size_t count)
{
// Radix-2 Decimation in Time FFT Algorithm
// http://en.dsplib.org/content/fft_dec_in_time.html
// Only power-of-two sizes supported
assert((count & (count - 1)) == 0);
unsigned int levels = 0;
while (1 << levels <= (int)count) {
levels++;
}
for (size_t i = 0; i < count; i++) {
size_t j = 0;
for (int k = 0; k < (int)levels; k++) {
j <<= 1;
j |= ((i >> k) & 1);
}
if (j > i) {
float temp = src->realp[i];
src->realp[i] = src->realp[j];
src->realp[j] = temp;
temp = src->imagp[i];
src->imagp[i] = src->imagp[j];
src->imagp[j] = temp;
}
}
for (size_t size = 2; size <= count; size *= 2) {
size_t halfsize = size / 2;
size_t step = count / size;
for (size_t i = 0; i < count; i += size) {
for (size_t j = i, k = 0; j < i + halfsize; j++, k += step) {
float temp_real = src->realp[j + halfsize] * workspace.cos_table[k];
temp_real += src->imagp[j + halfsize] * workspace.sin_table[k];
float temp_imag = -src->realp[j + halfsize] * workspace.sin_table[k];
temp_imag += src->imagp[j + halfsize] * workspace.cos_table[k];
src->realp[j + halfsize] = src->realp[j] - temp_real;
src->imagp[j + halfsize] = src->imagp[j] - temp_imag;
src->realp[j] += temp_real;
src->imagp[j] += temp_imag;
}
}
}
}
void FFTInverse(const FFTWorkspace& workspace, SplitComplex* src, size_t count)
{
SplitComplex swapped;
swapped.imagp = src->realp;
swapped.realp = src->imagp;
FFTForward(workspace, &swapped, count);
}
void Int16ToFloat(const short* src, size_t srcStride, float* dest, size_t destStride, size_t count)
{
const short* r = src;
float* w = dest;
while (w < dest + destStride * count) {
*w = (float)*r;
r += srcStride;
w += destStride;
}
}
void Scale(float* buffer, float scale, size_t count)
{
float* w = buffer;
while (w < buffer + count) {
*w *= scale;
w++;
}
}
void ScaleCopy(const float* src, float scale, float* dest, size_t count)
{
const float* r = src;
float* w = dest;
while (w < dest + count) {
*w = *r * scale;
w++;
r++;
}
}
void ScaleCopy(const SplitComplex* src, float scale, SplitComplex* dest, size_t count)
{
ScaleCopy(src->realp, scale, dest->realp, count);
ScaleCopy(src->imagp, scale, dest->imagp, count);
}
void ScaleRamp(float* buffer, float scaleStart, float scaleStep, size_t count)
{
float* w = buffer;
float s = scaleStart;
while (w < buffer + count) {
*w *= s;
w++;
s += scaleStep;
}
}
void Accumulate(float* buffer, size_t bufferStride, const float* buffer2, size_t buffer2Stride, size_t count)
{
float* w = buffer;
const float* r = buffer2;
while (w < buffer + bufferStride * count) {
*w *= *r;
w += bufferStride;
r += buffer2Stride;
}
}
void Accumulate(SplitComplex* buffer, const SplitComplex* buffer2, size_t count)
{
for (size_t i = 0; i < count; i++) {
buffer->imagp[i] += buffer2->imagp[i];
buffer->realp[i] += buffer2->realp[i];
}
}
void Multiply(const SplitComplex* a, const SplitComplex* b, SplitComplex* c, size_t count)
{
for (size_t i = 0; i < count; i++) {
c->realp[i] = a->realp[i] * b->realp[i] - a->imagp[i] * b->imagp[i];
c->imagp[i] = a->realp[i] * b->imagp[i] + a->imagp[i] * b->realp[i];
}
}
} // namespace KRDSP
#endif // KRDSP_SLOW