- Imported animations now have the auto_play and loop flags set to false by default - Implemented Pre-Rotation, Post-Rotation, Scale Offset, Rotate Offset, Scale Pivot, and Rotate Pivot transform attributes. - Reduced use of euler angles, replacing them with Quaternions where possible - Fixed bug with incorrect Y rotation in KRMat4::rotate - Material / GL Context changes have been optimized to reduce redundant glUniform calls - New KRMesh format implemented, with support for importing BindPose matrices - Fixed bug that caused a duplicate "default_camera" node to be added rather than picking up an existing "default_camera" node imported from FBX. This enables animations to drive the camera correctly. - Implemented KRVector3::Scale - Implemented KRVector3::KRVector3(double *v);
361 lines
11 KiB
C++
361 lines
11 KiB
C++
//
|
|
// KRQuaternion.cpp
|
|
// KREngine
|
|
//
|
|
// Copyright 2012 Kearwood Gilbert. All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other materials
|
|
// provided with the distribution.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// The views and conclusions contained in the software and documentation are those of the
|
|
// authors and should not be interpreted as representing official policies, either expressed
|
|
// or implied, of Kearwood Gilbert.
|
|
//
|
|
|
|
#include "KRQuaternion.h"
|
|
#include "KRVector3.h"
|
|
|
|
KRQuaternion::KRQuaternion() {
|
|
m_val[0] = 1.0;
|
|
m_val[1] = 0.0;
|
|
m_val[2] = 0.0;
|
|
m_val[3] = 0.0;
|
|
}
|
|
|
|
KRQuaternion::KRQuaternion(float w, float x, float y, float z) {
|
|
m_val[0] = w;
|
|
m_val[1] = x;
|
|
m_val[2] = y;
|
|
m_val[3] = z;
|
|
}
|
|
|
|
KRQuaternion::KRQuaternion(const KRQuaternion& p) {
|
|
m_val[0] = p[0];
|
|
m_val[1] = p[1];
|
|
m_val[2] = p[2];
|
|
m_val[3] = p[3];
|
|
}
|
|
|
|
KRQuaternion& KRQuaternion::operator =( const KRQuaternion& p ) {
|
|
m_val[0] = p[0];
|
|
m_val[1] = p[1];
|
|
m_val[2] = p[2];
|
|
m_val[3] = p[3];
|
|
return *this;
|
|
}
|
|
|
|
KRQuaternion::KRQuaternion(const KRVector3 &euler) {
|
|
setEulerZYX(euler);
|
|
}
|
|
|
|
KRQuaternion::KRQuaternion(const KRVector3 &from_vector, const KRVector3 &to_vector) {
|
|
|
|
KRVector3 a = KRVector3::Cross(from_vector, to_vector);
|
|
m_val[0] = a[0];
|
|
m_val[1] = a[1];
|
|
m_val[2] = a[2];
|
|
m_val[3] = sqrt(from_vector.sqrMagnitude() * to_vector.sqrMagnitude()) + KRVector3::Dot(from_vector, to_vector);
|
|
normalize();
|
|
}
|
|
|
|
KRQuaternion::~KRQuaternion() {
|
|
|
|
}
|
|
|
|
void KRQuaternion::setEulerXYZ(const KRVector3 &euler)
|
|
{
|
|
*this = KRQuaternion::FromAngleAxis(KRVector3(1.0f, 0.0f, 0.0f), euler.x)
|
|
* KRQuaternion::FromAngleAxis(KRVector3(0.0f, 1.0f, 0.0f), euler.y)
|
|
* KRQuaternion::FromAngleAxis(KRVector3(0.0f, 0.0f, 1.0f), euler.z);
|
|
}
|
|
|
|
void KRQuaternion::setEulerZYX(const KRVector3 &euler) {
|
|
// ZYX Order!
|
|
float c1 = cos(euler[0] * 0.5f);
|
|
float c2 = cos(euler[1] * 0.5f);
|
|
float c3 = cos(euler[2] * 0.5f);
|
|
float s1 = sin(euler[0] * 0.5f);
|
|
float s2 = sin(euler[1] * 0.5f);
|
|
float s3 = sin(euler[2] * 0.5f);
|
|
|
|
m_val[0] = c1 * c2 * c3 + s1 * s2 * s3;
|
|
m_val[1] = s1 * c2 * c3 - c1 * s2 * s3;
|
|
m_val[2] = c1 * s2 * c3 + s1 * c2 * s3;
|
|
m_val[3] = c1 * c2 * s3 - s1 * s2 * c3;
|
|
}
|
|
|
|
float KRQuaternion::operator [](unsigned i) const {
|
|
return m_val[i];
|
|
}
|
|
|
|
float &KRQuaternion::operator [](unsigned i) {
|
|
return m_val[i];
|
|
}
|
|
|
|
KRVector3 KRQuaternion::eulerXYZ() const {
|
|
double a2 = 2 * (m_val[0] * m_val[2] - m_val[1] * m_val[3]);
|
|
if(a2 <= -0.99999) {
|
|
return KRVector3(
|
|
2.0 * atan2(m_val[1], m_val[0]),
|
|
-PI * 0.5f,
|
|
0
|
|
);
|
|
} else if(a2 >= 0.99999) {
|
|
return KRVector3(
|
|
2.0 * atan2(m_val[1], m_val[0]),
|
|
PI * 0.5f,
|
|
0
|
|
);
|
|
} else {
|
|
return KRVector3(
|
|
atan2(2 * (m_val[0] * m_val[1] + m_val[2] * m_val[3]), (1 - 2 * (m_val[1] * m_val[1] + m_val[2] * m_val[2]))),
|
|
asin(a2),
|
|
atan2(2 * (m_val[0] * m_val[3] + m_val[1] * m_val[2]), (1 - 2 * (m_val[2] * m_val[2] + m_val[3] * m_val[3])))
|
|
);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
bool operator ==(KRQuaternion &v1, KRQuaternion &v2) {
|
|
return
|
|
v1[0] == v2[0]
|
|
&& v1[1] == v2[1]
|
|
&& v1[2] == v2[2]
|
|
&& v1[3] == v2[3];
|
|
}
|
|
|
|
bool operator !=(KRQuaternion &v1, KRQuaternion &v2) {
|
|
return
|
|
v1[0] != v2[0]
|
|
|| v1[1] != v2[1]
|
|
|| v1[2] != v2[2]
|
|
|| v1[3] != v2[3];
|
|
}
|
|
|
|
KRQuaternion KRQuaternion::operator *(const KRQuaternion &v) {
|
|
float t0 = (m_val[3]-m_val[2])*(v[2]-v[3]);
|
|
float t1 = (m_val[0]+m_val[1])*(v[0]+v[1]);
|
|
float t2 = (m_val[0]-m_val[1])*(v[2]+v[3]);
|
|
float t3 = (m_val[3]+m_val[2])*(v[0]-v[1]);
|
|
float t4 = (m_val[3]-m_val[1])*(v[1]-v[2]);
|
|
float t5 = (m_val[3]+m_val[1])*(v[1]+v[2]);
|
|
float t6 = (m_val[0]+m_val[2])*(v[0]-v[3]);
|
|
float t7 = (m_val[0]-m_val[2])*(v[0]+v[3]);
|
|
float t8 = t5+t6+t7;
|
|
float t9 = (t4+t8)/2;
|
|
|
|
return KRQuaternion(
|
|
t0+t9-t5,
|
|
t1+t9-t8,
|
|
t2+t9-t7,
|
|
t3+t9-t6
|
|
);
|
|
}
|
|
|
|
KRQuaternion KRQuaternion::operator *(float v) const {
|
|
return KRQuaternion(m_val[0] * v, m_val[1] * v, m_val[2] * v, m_val[3] * v);
|
|
}
|
|
|
|
KRQuaternion KRQuaternion::operator /(float num) const {
|
|
float inv_num = 1.0f / num;
|
|
return KRQuaternion(m_val[0] * inv_num, m_val[1] * inv_num, m_val[2] * inv_num, m_val[3] * inv_num);
|
|
}
|
|
|
|
KRQuaternion KRQuaternion::operator +(const KRQuaternion &v) const {
|
|
return KRQuaternion(m_val[0] + v[0], m_val[1] + v[1], m_val[2] + v[2], m_val[3] + v[3]);
|
|
}
|
|
|
|
KRQuaternion KRQuaternion::operator -(const KRQuaternion &v) const {
|
|
return KRQuaternion(m_val[0] - v[0], m_val[1] - v[1], m_val[2] - v[2], m_val[3] - v[3]);
|
|
}
|
|
|
|
KRQuaternion& KRQuaternion::operator +=(const KRQuaternion& v) {
|
|
m_val[0] += v[0];
|
|
m_val[1] += v[1];
|
|
m_val[2] += v[2];
|
|
m_val[3] += v[3];
|
|
return *this;
|
|
}
|
|
|
|
KRQuaternion& KRQuaternion::operator -=(const KRQuaternion& v) {
|
|
m_val[0] -= v[0];
|
|
m_val[1] -= v[1];
|
|
m_val[2] -= v[2];
|
|
m_val[3] -= v[3];
|
|
return *this;
|
|
}
|
|
|
|
KRQuaternion& KRQuaternion::operator *=(const KRQuaternion& v) {
|
|
float t0 = (m_val[3]-m_val[2])*(v[2]-v[3]);
|
|
float t1 = (m_val[0]+m_val[1])*(v[0]+v[1]);
|
|
float t2 = (m_val[0]-m_val[1])*(v[2]+v[3]);
|
|
float t3 = (m_val[3]+m_val[2])*(v[0]-v[1]);
|
|
float t4 = (m_val[3]-m_val[1])*(v[1]-v[2]);
|
|
float t5 = (m_val[3]+m_val[1])*(v[1]+v[2]);
|
|
float t6 = (m_val[0]+m_val[2])*(v[0]-v[3]);
|
|
float t7 = (m_val[0]-m_val[2])*(v[0]+v[3]);
|
|
float t8 = t5+t6+t7;
|
|
float t9 = (t4+t8)/2;
|
|
|
|
m_val[0] = t0+t9-t5;
|
|
m_val[1] = t1+t9-t8;
|
|
m_val[2] = t2+t9-t7;
|
|
m_val[3] = t3+t9-t6;
|
|
|
|
return *this;
|
|
}
|
|
|
|
KRQuaternion& KRQuaternion::operator *=(const float& v) {
|
|
m_val[0] *= v;
|
|
m_val[1] *= v;
|
|
m_val[2] *= v;
|
|
m_val[3] *= v;
|
|
return *this;
|
|
}
|
|
|
|
KRQuaternion& KRQuaternion::operator /=(const float& v) {
|
|
float inv_v = 1.0f / v;
|
|
m_val[0] *= inv_v;
|
|
m_val[1] *= inv_v;
|
|
m_val[2] *= inv_v;
|
|
m_val[3] *= inv_v;
|
|
return *this;
|
|
}
|
|
|
|
KRQuaternion KRQuaternion::operator +() const {
|
|
return *this;
|
|
}
|
|
|
|
KRQuaternion KRQuaternion::operator -() const {
|
|
return KRQuaternion(-m_val[0], -m_val[1], -m_val[2], -m_val[3]);
|
|
}
|
|
|
|
KRQuaternion Normalize(const KRQuaternion &v1) {
|
|
float inv_magnitude = 1.0f / sqrtf(v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2] + v1[3] * v1[3]);
|
|
return KRQuaternion(
|
|
v1[0] * inv_magnitude,
|
|
v1[1] * inv_magnitude,
|
|
v1[2] * inv_magnitude,
|
|
v1[3] * inv_magnitude
|
|
);
|
|
}
|
|
|
|
void KRQuaternion::normalize() {
|
|
float inv_magnitude = 1.0f / sqrtf(m_val[0] * m_val[0] + m_val[1] * m_val[1] + m_val[2] * m_val[2] + m_val[3] * m_val[3]);
|
|
m_val[0] *= inv_magnitude;
|
|
m_val[1] *= inv_magnitude;
|
|
m_val[2] *= inv_magnitude;
|
|
m_val[3] *= inv_magnitude;
|
|
}
|
|
|
|
KRQuaternion Conjugate(const KRQuaternion &v1) {
|
|
return KRQuaternion(v1[0], -v1[1], -v1[2], -v1[3]);
|
|
}
|
|
|
|
void KRQuaternion::conjugate() {
|
|
m_val[1] = -m_val[1];
|
|
m_val[2] = -m_val[2];
|
|
m_val[3] = -m_val[3];
|
|
}
|
|
|
|
KRMat4 KRQuaternion::rotationMatrix() const {
|
|
KRMat4 matRotate;
|
|
|
|
/*
|
|
KRVector3 euler = eulerXYZ();
|
|
|
|
matRotate.rotate(euler.x, X_AXIS);
|
|
matRotate.rotate(euler.y, Y_AXIS);
|
|
matRotate.rotate(euler.z, Z_AXIS);
|
|
*/
|
|
|
|
// FINDME - Determine why the more optimal routine commented below wasn't working
|
|
|
|
|
|
matRotate.c[0] = 1.0 - 2.0 * (m_val[2] * m_val[2] + m_val[3] * m_val[3]);
|
|
matRotate.c[1] = 2.0 * (m_val[1] * m_val[2] - m_val[0] * m_val[3]);
|
|
matRotate.c[2] = 2.0 * (m_val[0] * m_val[2] + m_val[1] * m_val[3]);
|
|
|
|
matRotate.c[4] = 2.0 * (m_val[1] * m_val[2] + m_val[0] * m_val[3]);
|
|
matRotate.c[5] = 1.0 - 2.0 * (m_val[1] * m_val[1] + m_val[3] * m_val[3]);
|
|
matRotate.c[6] = 2.0 * (m_val[2] * m_val[3] - m_val[0] * m_val[1]);
|
|
|
|
matRotate.c[8] = 2.0 * (m_val[1] * m_val[3] - m_val[0] * m_val[2]);
|
|
matRotate.c[9] = 2.0 * (m_val[0] * m_val[1] + m_val[2] * m_val[3]);
|
|
matRotate.c[10] = 1.0 - 2.0 * (m_val[1] * m_val[1] + m_val[2] * m_val[2]);
|
|
|
|
return matRotate;
|
|
}
|
|
|
|
|
|
KRQuaternion KRQuaternion::FromAngleAxis(const KRVector3 &axis, float angle)
|
|
{
|
|
float ha = angle * 0.5f;
|
|
float sha = sin(ha);
|
|
return KRQuaternion(cos(ha), axis.x * sha, axis.y * sha, axis.z * sha);
|
|
}
|
|
|
|
float KRQuaternion::Dot(const KRQuaternion &v1, const KRQuaternion &v2)
|
|
{
|
|
return v1.m_val[0] * v2.m_val[0] + v1.m_val[1] * v2.m_val[1] + v1.m_val[2] * v2.m_val[2] + v1.m_val[3] * v2.m_val[3];
|
|
}
|
|
|
|
KRQuaternion KRQuaternion::Lerp(const KRQuaternion &a, const KRQuaternion &b, float t)
|
|
{
|
|
if (t <= 0.0f) {
|
|
return a;
|
|
} else if (t >= 1.0f) {
|
|
return b;
|
|
}
|
|
|
|
return a * (1.0f - t) + b * t;
|
|
}
|
|
|
|
KRQuaternion KRQuaternion::Slerp(const KRQuaternion &a, const KRQuaternion &b, float t)
|
|
{
|
|
if (t <= 0.0f) {
|
|
return a;
|
|
}
|
|
|
|
if (t >= 1.0f) {
|
|
return b;
|
|
}
|
|
|
|
float coshalftheta = Dot(a, b);
|
|
KRQuaternion c = a;
|
|
|
|
// Angle is greater than 180. We can negate the angle/quat to get the
|
|
// shorter rotation to reach the same destination.
|
|
if ( coshalftheta < 0.0f ) {
|
|
coshalftheta = -coshalftheta;
|
|
c = -c;
|
|
}
|
|
|
|
if ( coshalftheta > (1.0f - std::numeric_limits<float>::epsilon())) {
|
|
// Angle is tiny - save some computation by lerping instead.
|
|
return Lerp(c, b, t);
|
|
}
|
|
|
|
float halftheta = acos(coshalftheta);
|
|
|
|
return (c * sin((1.0f - t) * halftheta) + b * sin(t * halftheta)) / sin(halftheta);
|
|
}
|