Files
kraken/KREngine/kraken/KRReverbZone.cpp

167 lines
4.8 KiB
C++

//
// KRReverbZone.cpp
// KREngine
//
// Created by Kearwood Gilbert on 2012-12-06.
// Copyright (c) 2012 Kearwood Software. All rights reserved.
//
#include "KRReverbZone.h"
#include "KRContext.h"
KRReverbZone::KRReverbZone(KRScene &scene, std::string name) : KRNode(scene, name)
{
m_reverb = "";
m_reverb_gain = 1.0f;
m_gradient_distance = 0.25f;
}
KRReverbZone::~KRReverbZone()
{
}
std::string KRReverbZone::getElementName() {
return "reverb_zone";
}
tinyxml2::XMLElement *KRReverbZone::saveXML( tinyxml2::XMLNode *parent)
{
tinyxml2::XMLElement *e = KRNode::saveXML(parent);
e->SetAttribute("zone", m_zone.c_str());
e->SetAttribute("sample", m_reverb.c_str());
e->SetAttribute("gain", m_reverb_gain);
e->SetAttribute("gradient", m_gradient_distance);
return e;
}
void KRReverbZone::loadXML(tinyxml2::XMLElement *e)
{
KRNode::loadXML(e);
m_zone = e->Attribute("zone");
m_gradient_distance = 0.25f;
if(e->QueryFloatAttribute("gradient", &m_gradient_distance) != tinyxml2::XML_SUCCESS) {
m_gradient_distance = 0.25f;
}
m_reverb = e->Attribute("sample");
m_reverb_gain = 1.0f;
if(e->QueryFloatAttribute("gain", &m_reverb_gain) != tinyxml2::XML_SUCCESS) {
m_reverb_gain = 1.0f;
}
}
std::string KRReverbZone::getReverb()
{
return m_reverb;
}
void KRReverbZone::setReverb(const std::string &reverb)
{
m_reverb = reverb;
}
float KRReverbZone::getReverbGain()
{
return m_reverb_gain;
}
void KRReverbZone::setReverbGain(float reverb_gain)
{
m_reverb_gain = reverb_gain;
}
std::string KRReverbZone::getZone()
{
return m_zone;
}
void KRReverbZone::setZone(const std::string &zone)
{
m_zone = zone;
}
void KRReverbZone::render(KRCamera *pCamera, std::vector<KRPointLight *> &point_lights, std::vector<KRDirectionalLight *> &directional_lights, std::vector<KRSpotLight *>&spot_lights, const KRViewport &viewport, KRNode::RenderPass renderPass)
{
if(m_lod_visible <= LOD_VISIBILITY_PRESTREAM) return;
KRNode::render(pCamera, point_lights, directional_lights, spot_lights, viewport, renderPass);
bool bVisualize = pCamera->settings.debug_display == KRRenderSettings::KRENGINE_DEBUG_DISPLAY_SIREN_REVERB_ZONES;
if(renderPass == KRNode::RENDER_PASS_FORWARD_TRANSPARENT && bVisualize) {
KRMat4 sphereModelMatrix = getModelMatrix();
KRShader *pShader = getContext().getShaderManager()->getShader("visualize_overlay", pCamera, point_lights, directional_lights, spot_lights, 0, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, renderPass);
KRVector3 rim_color;
if(getContext().getShaderManager()->selectShader(*pCamera, pShader, viewport, sphereModelMatrix, point_lights, directional_lights, spot_lights, 0, renderPass, rim_color, 0.0f)) {
// Enable additive blending
GLDEBUG(glEnable(GL_BLEND));
GLDEBUG(glBlendFunc(GL_ONE, GL_ONE));
// Disable z-buffer write
GLDEBUG(glDepthMask(GL_FALSE));
// Enable z-buffer test
GLDEBUG(glEnable(GL_DEPTH_TEST));
GLDEBUG(glDepthFunc(GL_LEQUAL));
GLDEBUG(glDepthRangef(0.0, 1.0));
std::vector<KRMesh *> sphereModels = getContext().getMeshManager()->getModel("__sphere");
if(sphereModels.size()) {
for(int i=0; i < sphereModels[0]->getSubmeshCount(); i++) {
sphereModels[0]->renderSubmesh(i, renderPass, getName(), "visualize_overlay");
}
}
// Enable alpha blending
GLDEBUG(glEnable(GL_BLEND));
GLDEBUG(glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA));
}
}
}
float KRReverbZone::getGradientDistance()
{
return m_gradient_distance;
}
void KRReverbZone::setGradientDistance(float gradient_distance)
{
m_gradient_distance = gradient_distance;
}
KRAABB KRReverbZone::getBounds() {
// Reverb zones always have a -1, -1, -1 to 1, 1, 1 bounding box
return KRAABB(-KRVector3::One(), KRVector3::One(), getModelMatrix());
}
float KRReverbZone::getContainment(const KRVector3 &pos)
{
KRAABB bounds = getBounds();
if(bounds.contains(pos)) {
KRVector3 size = bounds.size();
KRVector3 diff = pos - bounds.center();
diff = diff * 2.0f;
diff = KRVector3(diff.x / size.x, diff.y / size.y, diff.z / size.z);
float d = diff.magnitude();
if(m_gradient_distance <= 0.0f) {
// Avoid division by zero
d = d > 1.0f ? 0.0f : 1.0f;
} else {
d = (1.0f - d) / m_gradient_distance;
d = KRCLAMP(d, 0.0f, 1.0f);
}
return d;
} else {
return 0.0f;
}
}