Files
kraken/KREngine/kraken/KRAABB.cpp
Kearwood Gilbert e6207fbb83 Performance Optimizes
Small bug fixes
Implemented KRVector4
2013-04-24 12:48:55 -07:00

230 lines
6.1 KiB
C++

//
// KRAABB.cpp
// KREngine
//
// Created by Kearwood Gilbert on 2012-08-30.
// Copyright (c) 2012 Kearwood Software. All rights reserved.
//
#include "KRAABB.h"
#include "KRMat4.h"
#include "KRVector2.h"
#include "assert.h"
KRAABB::KRAABB()
{
min = KRVector3::Min();
max = KRVector3::Max();
}
KRAABB::KRAABB(const KRVector3 &minPoint, const KRVector3 &maxPoint)
{
min = minPoint;
max = maxPoint;
}
KRAABB::KRAABB(const KRVector3 &corner1, const KRVector3 &corner2, const KRMat4 &modelMatrix)
{
for(int iCorner=0; iCorner<8; iCorner++) {
KRVector3 sourceCornerVertex = KRMat4::DotWDiv(modelMatrix, KRVector3(
(iCorner & 1) == 0 ? corner1.x : corner2.x,
(iCorner & 2) == 0 ? corner1.y : corner2.y,
(iCorner & 4) == 0 ? corner1.z : corner2.z));
if(iCorner == 0) {
min = sourceCornerVertex;
max = sourceCornerVertex;
} else {
if(sourceCornerVertex.x < min.x) min.x = sourceCornerVertex.x;
if(sourceCornerVertex.y < min.y) min.y = sourceCornerVertex.y;
if(sourceCornerVertex.z < min.z) min.z = sourceCornerVertex.z;
if(sourceCornerVertex.x > max.x) max.x = sourceCornerVertex.x;
if(sourceCornerVertex.y > max.y) max.y = sourceCornerVertex.y;
if(sourceCornerVertex.z > max.z) max.z = sourceCornerVertex.z;
}
}
}
KRAABB::~KRAABB()
{
}
KRAABB& KRAABB::operator =(const KRAABB& b)
{
min = b.min;
max = b.max;
return *this;
}
bool KRAABB::operator ==(const KRAABB& b) const
{
return min == b.min && max == b.max;
}
bool KRAABB::operator !=(const KRAABB& b) const
{
return min != b.min || max != b.max;
}
KRVector3 KRAABB::center() const
{
return (min + max) * 0.5f;
}
KRVector3 KRAABB::size() const
{
return max - min;
}
float KRAABB::volume() const
{
KRVector3 s = size();
return s.x * s.y * s.z;
}
void KRAABB::scale(const KRVector3 &s)
{
KRVector3 prev_center = center();
KRVector3 prev_size = size();
KRVector3 new_scale = KRVector3(prev_size.x * s.x, prev_size.y * s.y, prev_size.z * s.z) * 0.5f;
min = prev_center - new_scale;
max = prev_center + new_scale;
}
void KRAABB::scale(float s)
{
scale(KRVector3(s));
}
bool KRAABB::operator >(const KRAABB& b) const
{
// Comparison operators are implemented to allow insertion into sorted containers such as std::set
if(min > b.min) {
return true;
} else if(min < b.min) {
return false;
} else if(max > b.max) {
return true;
} else {
return false;
}
}
bool KRAABB::operator <(const KRAABB& b) const
{
// Comparison operators are implemented to allow insertion into sorted containers such as std::set
if(min < b.min) {
return true;
} else if(min > b.min) {
return false;
} else if(max < b.max) {
return true;
} else {
return false;
}
}
bool KRAABB::intersects(const KRAABB& b) const
{
// Return true if the two volumes intersect
return min.x <= b.max.x && min.y <= b.max.y && min.z <= b.max.z && max.x >= b.min.x && max.y >= b.min.y && max.z >= b.max.z;
}
bool KRAABB::contains(const KRAABB &b) const
{
// Return true if the passed KRAABB is entirely contained within this KRAABB
return b.min.x >= min.x && b.min.y >= min.y && b.min.z >= min.z && b.max.x <= max.x && b.max.y <= max.y && b.max.z <= max.z;
}
bool KRAABB::contains(const KRVector3 &v) const
{
return v.x >= min.x && v.x <= max.x && v.y >= min.y && v.y <= max.y && v.z >= min.z && v.z <= max.z;
}
KRAABB KRAABB::Infinite()
{
return KRAABB(KRVector3::Min(), KRVector3::Max());
}
KRAABB KRAABB::Zero()
{
return KRAABB(KRVector3::Zero(), KRVector3::Zero());
}
float KRAABB::longest_radius() const
{
float radius1 = (center() - min).magnitude();
float radius2 = (max - center()).magnitude();
return radius1 > radius2 ? radius1 : radius2;
}
bool KRAABB::intersectsLine(const KRVector3 &v1, const KRVector3 &v2) const
{
KRVector3 dir = KRVector3::Normalize(v2 - v1);
float length = (v2 - v1).magnitude();
// EZ cases: if the ray starts inside the box, or ends inside
// the box, then it definitely hits the box.
// I'm using this code for ray tracing with an octree,
// so I needed rays that start and end within an
// octree node to COUNT as hits.
// You could modify this test to (ray starts inside and ends outside)
// to qualify as a hit if you wanted to NOT count totally internal rays
if( contains( v1 ) || contains( v2 ) )
return true ;
// the algorithm says, find 3 t's,
KRVector3 t ;
// LARGEST t is the only one we need to test if it's on the face.
for(int i = 0 ; i < 3 ; i++) {
if( dir[i] > 0 ) { // CULL BACK FACE
t[i] = ( min[i] - v1[i] ) / dir[i];
} else {
t[i] = ( max[i] - v1[i] ) / dir[i];
}
}
int mi = 0;
if(t[1] > t[mi]) mi = 1;
if(t[2] > t[mi]) mi = 2;
if(t[mi] >= 0 && t[mi] <= length) {
KRVector3 pt = v1 + dir * t[mi];
// check it's in the box in other 2 dimensions
int o1 = ( mi + 1 ) % 3 ; // i=0: o1=1, o2=2, i=1: o1=2,o2=0 etc.
int o2 = ( mi + 2 ) % 3 ;
return pt[o1] >= min[o1] && pt[o1] <= max[o1] && pt[o2] >= min[o2] && pt[o2] <= max[o2];
}
return false ; // the ray did not hit the box.
}
bool KRAABB::intersectsRay(const KRVector3 &v1, const KRVector3 &dir) const
{
// FINDME, TODO - Need to implement this
return true;
}
void KRAABB::encapsulate(const KRAABB & b)
{
if(b.min.x < min.x) min.x = b.min.x;
if(b.min.y < min.y) min.y = b.min.y;
if(b.min.z < min.z) min.z = b.min.z;
if(b.max.x > max.x) max.x = b.max.x;
if(b.max.y > max.y) max.y = b.max.y;
if(b.max.z > max.z) max.z = b.max.z;
}
KRVector3 KRAABB::nearestPoint(const KRVector3 & v) const
{
return KRVector3(KRCLAMP(v.x, min.x, max.x), KRCLAMP(v.y, min.y, max.y), KRCLAMP(v.z, min.z, max.z));
}