Files
kraken/KREngine/KREngine/Classes/KRModel.cpp
kearwood ec6bd06bd7 Corrected bone names in krobject file format
--HG--
extra : convert_revision : svn%3A7752d6cf-9f14-4ad2-affc-04f1e67b81a5/trunk%40186
2012-12-12 23:21:15 +00:00

683 lines
25 KiB
C++

//
// KRModel.cpp
// KREngine
//
// Copyright 2012 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#import <stdint.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include "KRModel.h"
#include "KRVector3.h"
#import "KRShader.h"
#import "KRShaderManager.h"
#import "KRContext.h"
KRModel::KRModel(KRContext &context, std::string name) : KRResource(context, name) {
m_hasTransparency = false;
m_materials.clear();
m_uniqueMaterials.clear();
m_pData = new KRDataBlock();
setName(name);
}
KRModel::KRModel(KRContext &context, std::string name, KRDataBlock *data) : KRResource(context, name) {
m_hasTransparency = false;
m_materials.clear();
m_uniqueMaterials.clear();
m_pData = new KRDataBlock();
setName(name);
loadPack(data);
}
void KRModel::setName(const std::string name) {
m_lodCoverage = 100;
m_lodBaseName = name;
size_t last_underscore_pos = name.find_last_of('_');
if(last_underscore_pos != std::string::npos) {
// Found an underscore
std::string suffix = name.substr(last_underscore_pos + 1);
if(suffix.find_first_of("lod") == 0) {
std::string lod_level_string = suffix.substr(3);
char *end = NULL;
int c = (int)strtol(lod_level_string.c_str(), &end, 10);
if(c >= 0 && c <= 100 && *end == '\0') {
m_lodCoverage = c;
m_lodBaseName = name.substr(0, last_underscore_pos);
}
}
}
}
KRModel::~KRModel() {
clearData();
if(m_pData) delete m_pData;
}
std::string KRModel::getExtension() {
return "krobject";
}
bool KRModel::save(const std::string& path) {
clearBuffers();
return m_pData->save(path);
}
void KRModel::loadPack(KRDataBlock *data) {
clearData();
delete m_pData;
m_pData = data;
updateAttributeOffsets();
pack_header *pHeader = getHeader();
m_minPoint = KRVector3(pHeader->minx, pHeader->miny, pHeader->minz);
m_maxPoint = KRVector3(pHeader->maxx, pHeader->maxy, pHeader->maxz);
}
#if TARGET_OS_IPHONE
void KRModel::render(KRCamera *pCamera, std::vector<KRLight *> &lights, const KRViewport &viewport, const KRMat4 &matModel, KRTexture *pLightMap, KRNode::RenderPass renderPass, const std::vector<KRBone *> &bones) {
//fprintf(stderr, "Rendering model: %s\n", m_name.c_str());
if(renderPass != KRNode::RENDER_PASS_ADDITIVE_PARTICLES && renderPass != KRNode::RENDER_PASS_VOLUMETRIC_EFFECTS_ADDITIVE) {
if(m_materials.size() == 0) {
vector<KRModel::Submesh *> submeshes = getSubmeshes();
for(std::vector<KRModel::Submesh *>::iterator itr = submeshes.begin(); itr != submeshes.end(); itr++) {
const char *szMaterialName = (*itr)->szMaterialName;
KRMaterial *pMaterial = getContext().getMaterialManager()->getMaterial(szMaterialName);
m_materials.push_back(pMaterial);
if(pMaterial) {
m_uniqueMaterials.insert(pMaterial);
} else {
fprintf(stderr, "Missing material: %s\n", szMaterialName);
}
}
m_hasTransparency = false;
for(std::set<KRMaterial *>::iterator mat_itr = m_uniqueMaterials.begin(); mat_itr != m_uniqueMaterials.end(); mat_itr++) {
if((*mat_itr)->isTransparent()) {
m_hasTransparency = true;
break;
}
}
}
KRMaterial *pPrevBoundMaterial = NULL;
char szPrevShaderKey[256];
szPrevShaderKey[0] = '\0';
int cSubmeshes = getSubmeshes().size();
if(renderPass == KRNode::RENDER_PASS_SHADOWMAP) {
for(int iSubmesh=0; iSubmesh<cSubmeshes; iSubmesh++) {
KRMaterial *pMaterial = m_materials[iSubmesh];
if(pMaterial != NULL) {
if(!pMaterial->isTransparent()) {
// Exclude transparent and semi-transparent meshes from shadow maps
renderSubmesh(iSubmesh);
}
}
}
} else {
// Apply submeshes in per-material batches to reduce number of state changes
for(std::set<KRMaterial *>::iterator mat_itr = m_uniqueMaterials.begin(); mat_itr != m_uniqueMaterials.end(); mat_itr++) {
for(int iSubmesh=0; iSubmesh<cSubmeshes; iSubmesh++) {
KRMaterial *pMaterial = m_materials[iSubmesh];
if(pMaterial != NULL && pMaterial == (*mat_itr)) {
if((!pMaterial->isTransparent() && renderPass != KRNode::RENDER_PASS_FORWARD_TRANSPARENT) || (pMaterial->isTransparent() && renderPass == KRNode::RENDER_PASS_FORWARD_TRANSPARENT)) {
if(pMaterial->bind(&pPrevBoundMaterial, szPrevShaderKey, pCamera, lights, viewport, matModel, pLightMap, renderPass)) {
switch(pMaterial->getAlphaMode()) {
case KRMaterial::KRMATERIAL_ALPHA_MODE_OPAQUE: // Non-transparent materials
case KRMaterial::KRMATERIAL_ALPHA_MODE_TEST: // Alpha in diffuse texture is interpreted as punch-through when < 0.5
renderSubmesh(iSubmesh);
break;
case KRMaterial::KRMATERIAL_ALPHA_MODE_BLENDONESIDE: // Blended alpha with backface culling
renderSubmesh(iSubmesh);
break;
case KRMaterial::KRMATERIAL_ALPHA_MODE_BLENDTWOSIDE: // Blended alpha rendered in two passes. First pass renders backfaces; second pass renders frontfaces.
// Render back faces first
GLDEBUG(glCullFace(GL_BACK));
renderSubmesh(iSubmesh);
// Render front faces second
GLDEBUG(glCullFace(GL_BACK));
renderSubmesh(iSubmesh);
break;
}
}
}
}
}
}
}
}
}
#endif
GLfloat KRModel::getMaxDimension() {
GLfloat m = 0.0;
if(m_maxPoint.x - m_minPoint.x > m) m = m_maxPoint.x - m_minPoint.x;
if(m_maxPoint.y - m_minPoint.y > m) m = m_maxPoint.y - m_minPoint.y;
if(m_maxPoint.z - m_minPoint.z > m) m = m_maxPoint.z - m_minPoint.z;
return m;
}
bool KRModel::hasTransparency() {
return m_hasTransparency;
}
vector<KRModel::Submesh *> KRModel::getSubmeshes() {
if(m_submeshes.size() == 0) {
pack_header *pHeader = getHeader();
pack_material *pPackMaterials = (pack_material *)(pHeader+1);
m_submeshes.clear();
for(int iMaterial=0; iMaterial < pHeader->submesh_count; iMaterial++) {
pack_material *pPackMaterial = pPackMaterials + iMaterial;
Submesh *pSubmesh = new Submesh();
pSubmesh->start_vertex = pPackMaterial->start_vertex;
pSubmesh->vertex_count = pPackMaterial->vertex_count;
strncpy(pSubmesh->szMaterialName, pPackMaterial->szName, KRENGINE_MAX_NAME_LENGTH);
pSubmesh->szMaterialName[KRENGINE_MAX_NAME_LENGTH-1] = '\0';
//fprintf(stderr, "Submesh material: \"%s\"\n", pSubmesh->szMaterialName);
m_submeshes.push_back(pSubmesh);
}
}
return m_submeshes;
}
void KRModel::renderSubmesh(int iSubmesh) {
unsigned char *pVertexData = getVertexData();
pack_header *pHeader = getHeader();
int cBuffers = (pHeader->vertex_count + MAX_VBO_SIZE - 1) / MAX_VBO_SIZE;
vector<KRModel::Submesh *> submeshes = getSubmeshes();
Submesh *pSubmesh = submeshes[iSubmesh];
int iVertex = pSubmesh->start_vertex;
int iBuffer = iVertex / MAX_VBO_SIZE;
iVertex = iVertex % MAX_VBO_SIZE;
int cVertexes = pSubmesh->vertex_count;
while(cVertexes > 0) {
GLsizei cBufferVertexes = iBuffer < cBuffers - 1 ? MAX_VBO_SIZE : pHeader->vertex_count % MAX_VBO_SIZE;
int vertex_size = m_vertex_size;
void *vbo_end = (unsigned char *)pVertexData + iBuffer * MAX_VBO_SIZE * vertex_size + vertex_size * cBufferVertexes;
void *buffer_end = m_pData->getEnd();
assert(vbo_end <= buffer_end);
assert(cBufferVertexes <= 65535);
m_pContext->getModelManager()->bindVBO((unsigned char *)pVertexData + iBuffer * MAX_VBO_SIZE * vertex_size, vertex_size * cBufferVertexes, has_vertex_attribute(KRENGINE_ATTRIB_VERTEX), has_vertex_attribute(KRENGINE_ATTRIB_NORMAL), has_vertex_attribute(KRENGINE_ATTRIB_TANGENT), has_vertex_attribute(KRENGINE_ATTRIB_TEXUVA), has_vertex_attribute(KRENGINE_ATTRIB_TEXUVB), has_vertex_attribute(KRENGINE_ATTRIB_BONEINDEXES),
has_vertex_attribute(KRENGINE_ATTRIB_BONEWEIGHTS));
if(iVertex + cVertexes >= MAX_VBO_SIZE) {
assert(iVertex + (MAX_VBO_SIZE - iVertex) <= cBufferVertexes);
GLDEBUG(glDrawArrays(GL_TRIANGLES, iVertex, (MAX_VBO_SIZE - iVertex)));
cVertexes -= (MAX_VBO_SIZE - iVertex);
iVertex = 0;
iBuffer++;
} else {
assert(iVertex + cVertexes <= cBufferVertexes);
GLDEBUG(glDrawArrays(GL_TRIANGLES, iVertex, cVertexes));
cVertexes = 0;
}
}
}
void KRModel::LoadData(std::vector<KRVector3> vertices, std::vector<KRVector2> uva, std::vector<KRVector2> uvb, std::vector<KRVector3> normals, std::vector<KRVector3> tangents, std::vector<int> submesh_starts, std::vector<int> submesh_lengths, std::vector<std::string> material_names, std::vector<std::string> bone_names, std::vector<std::vector<int> > bone_indexes, std::vector<std::vector<float> > bone_weights) {
clearData();
bool calculate_normals = true;
bool calculate_tangents = true;
__int32_t vertex_attrib_flags = 0;
if(vertices.size()) {
vertex_attrib_flags |= (1 << KRENGINE_ATTRIB_VERTEX);
}
if(normals.size() || calculate_normals) {
vertex_attrib_flags += (1 << KRENGINE_ATTRIB_NORMAL);
}
if(tangents.size() || calculate_tangents) {
vertex_attrib_flags += (1 << KRENGINE_ATTRIB_TANGENT);
}
if(uva.size()) {
vertex_attrib_flags += (1 << KRENGINE_ATTRIB_TEXUVA);
}
if(uvb.size()) {
vertex_attrib_flags += (1 << KRENGINE_ATTRIB_TEXUVB);
}
if(bone_names.size()) {
vertex_attrib_flags += (1 << KRENGINE_ATTRIB_BONEINDEXES) + (1 << KRENGINE_ATTRIB_BONEWEIGHTS);
}
size_t vertex_size = VertexSizeForAttributes(vertex_attrib_flags);
size_t submesh_count = submesh_lengths.size();
size_t vertex_count = vertices.size();
size_t bone_count = bone_names.size();
size_t new_file_size = sizeof(pack_header) + sizeof(pack_material) * submesh_count + sizeof(pack_bone) * bone_count + vertex_size * vertex_count;
m_pData->expand(new_file_size);
pack_header *pHeader = getHeader();
memset(pHeader, 0, sizeof(pack_header));
pHeader->vertex_attrib_flags = vertex_attrib_flags;
pHeader->submesh_count = (__int32_t)submesh_count;
pHeader->vertex_count = (__int32_t)vertex_count;
pHeader->bone_count = (__int32_t)bone_count;
strcpy(pHeader->szTag, "KROBJPACK1.1 ");
updateAttributeOffsets();
pack_material *pPackMaterials = (pack_material *)(pHeader+1);
for(int iMaterial=0; iMaterial < pHeader->submesh_count; iMaterial++) {
pack_material *pPackMaterial = pPackMaterials + iMaterial;
pPackMaterial->start_vertex = submesh_starts[iMaterial];
pPackMaterial->vertex_count = submesh_lengths[iMaterial];
memset(pPackMaterial->szName, 0, KRENGINE_MAX_NAME_LENGTH);
strncpy(pPackMaterial->szName, material_names[iMaterial].c_str(), KRENGINE_MAX_NAME_LENGTH);
}
for(int bone_index=0; bone_index < bone_count; bone_index++) {
pack_bone *bone = getBone(bone_index);
memset(bone->szName, 0, KRENGINE_MAX_NAME_LENGTH);
strncpy(bone->szName, bone_names[bone_index].c_str(), KRENGINE_MAX_NAME_LENGTH);
}
bool bFirstVertex = true;
// VertexData *pVertexData = (VertexData *)(pPackMaterials + pHeader->submesh_count);
// VertexData *pVertex = pVertexData;
memset(getVertexData(), 0, m_vertex_size * vertices.size());
for(int iVertex=0; iVertex < vertices.size(); iVertex++) {
KRVector3 source_vertex = vertices[iVertex];
setVertexPosition(iVertex, source_vertex);
if(bone_names.size()) {
for(int bone_weight_index=0; bone_weight_index<KRENGINE_MAX_BONE_WEIGHTS_PER_VERTEX; bone_weight_index++) {
setBoneIndex(iVertex, bone_weight_index, bone_indexes[iVertex][bone_weight_index]);
setBoneWeight(iVertex, bone_weight_index, bone_weights[iVertex][bone_weight_index]);
}
}
if(bFirstVertex) {
bFirstVertex = false;
m_minPoint = source_vertex;
m_maxPoint = source_vertex;
} else {
if(source_vertex.x < m_minPoint.x) m_minPoint.x = source_vertex.x;
if(source_vertex.y < m_minPoint.y) m_minPoint.y = source_vertex.y;
if(source_vertex.z < m_minPoint.z) m_minPoint.z = source_vertex.z;
if(source_vertex.x > m_maxPoint.x) m_maxPoint.x = source_vertex.x;
if(source_vertex.y > m_maxPoint.y) m_maxPoint.y = source_vertex.y;
if(source_vertex.z > m_maxPoint.z) m_maxPoint.z = source_vertex.z;
}
if(uva.size() > iVertex) {
setVertexUVA(iVertex, uva[iVertex]);
}
if(uvb.size() > iVertex) {
setVertexUVB(iVertex, uvb[iVertex]);
}
if(normals.size() > iVertex) {
setVertexNormal(iVertex, normals[iVertex]);
}
if(tangents.size() > iVertex) {
setVertexTangent(iVertex, tangents[iVertex]);
}
}
pHeader->minx = m_minPoint.x;
pHeader->miny = m_minPoint.y;
pHeader->minz = m_minPoint.z;
pHeader->maxx = m_maxPoint.x;
pHeader->maxy = m_maxPoint.y;
pHeader->maxz = m_maxPoint.z;
// Calculate missing surface normals and tangents
//cout << " Calculate surface normals and tangents\n";
for(int iVertex=0; iVertex < vertices.size(); iVertex+= 3) {
KRVector3 p1 = getVertexPosition(iVertex);
KRVector3 p2 = getVertexPosition(iVertex+1);
KRVector3 p3 = getVertexPosition(iVertex+2);
KRVector3 v1 = p2 - p1;
KRVector3 v2 = p3 - p1;
// -- Calculate normal if missing --
if(calculate_normals) {
KRVector3 first_normal = getVertexNormal(iVertex);
if(first_normal.x == 0.0f && first_normal.y == 0.0f && first_normal.z == 0.0f) {
// Note - We don't take into consideration smoothing groups or smoothing angles when generating normals; all generated normals represent flat shaded polygons
KRVector3 normal = KRVector3::Cross(v1, v2);
normal.normalize();
setVertexNormal(iVertex, normal);
setVertexNormal(iVertex+1, normal);
setVertexNormal(iVertex+2, normal);
}
}
// -- Calculate tangent vector for normal mapping --
if(calculate_tangents) {
KRVector3 first_tangent = getVertexTangent(iVertex);
if(first_tangent.x == 0.0f && first_tangent.y == 0.0f && first_tangent.z == 0.0f) {
KRVector2 uv0 = getVertexUVA(iVertex);
KRVector2 uv1 = getVertexUVA(iVertex + 1);
KRVector2 uv2 = getVertexUVA(iVertex + 2);
KRVector2 st1 = KRVector2(uv1.x - uv0.x, uv1.y - uv0.y);
KRVector2 st2 = KRVector2(uv2.x - uv0.x, uv2.y - uv0.y);
double coef = 1/ (st1.x * st2.y - st2.x * st1.y);
KRVector3 tangent(
coef * ((v1.x * st2.y) + (v2.x * -st1.y)),
coef * ((v1.y * st2.y) + (v2.y * -st1.y)),
coef * ((v1.z * st2.y) + (v2.z * -st1.y))
);
tangent.normalize();
setVertexTangent(iVertex, tangent);
setVertexTangent(iVertex+1, tangent);
setVertexTangent(iVertex+2, tangent);
}
}
}
}
KRVector3 KRModel::getMinPoint() const {
return m_minPoint;
}
KRVector3 KRModel::getMaxPoint() const {
return m_maxPoint;
}
void KRModel::clearData() {
m_pData->unload();
}
void KRModel::clearBuffers() {
m_submeshes.clear();
}
int KRModel::getLODCoverage() const {
return m_lodCoverage;
}
std::string KRModel::getLODBaseName() const {
return m_lodBaseName;
}
// Predicate used with std::sort to sort by highest detail model first, decending to lowest detail LOD model
bool KRModel::lod_sort_predicate(const KRModel *m1, const KRModel *m2)
{
return m1->m_lodCoverage > m2->m_lodCoverage;
}
bool KRModel::has_vertex_attribute(vertex_attrib_t attribute_type) const
{
return (getHeader()->vertex_attrib_flags & (1 << attribute_type)) != 0;
}
KRModel::pack_header *KRModel::getHeader() const
{
return (pack_header *)m_pData->getStart();
}
KRModel::pack_bone *KRModel::getBone(int index)
{
pack_header *header = getHeader();
return (pack_bone *)((unsigned char *)m_pData->getStart() + sizeof(pack_header) + sizeof(pack_material) * header->submesh_count + sizeof(pack_bone) * index);
}
unsigned char *KRModel::getVertexData() const {
pack_header *pHeader = getHeader();
return ((unsigned char *)m_pData->getStart()) + sizeof(pack_header) + sizeof(pack_material) * pHeader->submesh_count + sizeof(pack_bone) * pHeader->bone_count;
}
KRModel::pack_material *KRModel::getSubmesh(int mesh_index)
{
return (pack_material *)((unsigned char *)m_pData->getStart() + sizeof(pack_header)) + mesh_index;
}
unsigned char *KRModel::getVertexData(int index) const
{
return getVertexData() + m_vertex_size * index;
}
int KRModel::getSubmeshCount()
{
pack_header *header = getHeader();
return header->submesh_count;
}
int KRModel::getVertexCount(int submesh)
{
return getSubmesh(submesh)->vertex_count;
}
KRVector3 KRModel::getVertexPosition(int index) const
{
if(has_vertex_attribute(KRENGINE_ATTRIB_VERTEX)) {
return KRVector3((float *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_VERTEX]));
} else {
return KRVector3::Zero();
}
}
KRVector3 KRModel::getVertexNormal(int index) const
{
if(has_vertex_attribute(KRENGINE_ATTRIB_NORMAL)) {
return KRVector3((float *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_NORMAL]));
} else {
return KRVector3::Zero();
}
}
KRVector3 KRModel::getVertexTangent(int index) const
{
if(has_vertex_attribute(KRENGINE_ATTRIB_TANGENT)) {
return KRVector3((float *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_TANGENT]));
} else {
return KRVector3::Zero();
}
}
KRVector2 KRModel::getVertexUVA(int index) const
{
if(has_vertex_attribute(KRENGINE_ATTRIB_TEXUVA)) {
return KRVector2((float *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_TEXUVA]));
} else {
return KRVector2::Zero();
}
}
KRVector2 KRModel::getVertexUVB(int index) const
{
if(has_vertex_attribute(KRENGINE_ATTRIB_TEXUVB)) {
return KRVector2((float *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_TEXUVB]));
} else {
return KRVector2::Zero();
}
}
void KRModel::setVertexPosition(int index, const KRVector3 &v)
{
float *vert = (float *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_VERTEX]);
vert[0] = v.x;
vert[1] = v.y;
vert[2] = v.z;
}
void KRModel::setVertexNormal(int index, const KRVector3 &v)
{
float *vert = (float *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_NORMAL]);
vert[0] = v.x;
vert[1] = v.y;
vert[2] = v.z;
}
void KRModel::setVertexTangent(int index, const KRVector3 & v)
{
float *vert = (float *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_TANGENT]);
vert[0] = v.x;
vert[1] = v.y;
vert[2] = v.z;
}
void KRModel::setVertexUVA(int index, const KRVector2 &v)
{
float *vert = (float *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_TEXUVA]);
vert[0] = v.x;
vert[1] = v.y;
}
void KRModel::setVertexUVB(int index, const KRVector2 &v)
{
float *vert = (float *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_TEXUVB]);
vert[0] = v.x;
vert[1] = v.y;
}
int KRModel::getBoneIndex(int index, int weight_index) const
{
unsigned char *vert = (unsigned char *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_BONEINDEXES]);
return vert[weight_index];
}
void KRModel::setBoneIndex(int index, int weight_index, int bone_index)
{
unsigned char *vert = (unsigned char *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_BONEINDEXES]);
vert[weight_index] = bone_index;
}
float KRModel::getBoneWeight(int index, int weight_index) const
{
float *vert = (float *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_BONEWEIGHTS]);
return vert[weight_index];
}
void KRModel::setBoneWeight(int index, int weight_index, float bone_weight)
{
float *vert = (float *)(getVertexData(index) + m_vertex_attribute_offset[KRENGINE_ATTRIB_BONEWEIGHTS]);
vert[weight_index] = bone_weight;
}
size_t KRModel::VertexSizeForAttributes(__int32_t vertex_attrib_flags)
{
size_t data_size = 0;
if(vertex_attrib_flags & (1 << KRENGINE_ATTRIB_VERTEX)) {
data_size += sizeof(float) * 3;
}
if(vertex_attrib_flags & (1 << KRENGINE_ATTRIB_NORMAL)) {
data_size += sizeof(float) * 3;
}
if(vertex_attrib_flags & (1 << KRENGINE_ATTRIB_TANGENT)) {
data_size += sizeof(float) * 3;
}
if(vertex_attrib_flags & (1 << KRENGINE_ATTRIB_TEXUVA)) {
data_size += sizeof(float) * 2;
}
if(vertex_attrib_flags & (1 << KRENGINE_ATTRIB_TEXUVB)) {
data_size += sizeof(float) * 2;
}
if(vertex_attrib_flags & (1 << KRENGINE_ATTRIB_BONEINDEXES)) {
data_size += 4; // 4 bytes
}
if(vertex_attrib_flags & (1 << KRENGINE_ATTRIB_BONEWEIGHTS)) {
data_size += sizeof(float) * 4;
}
return data_size;
}
void KRModel::updateAttributeOffsets()
{
pack_header *header = getHeader();
int mask = 0;
for(int i=0; i < KRENGINE_NUM_ATTRIBUTES; i++) {
if(has_vertex_attribute((vertex_attrib_t)i)) {
m_vertex_attribute_offset[i] = VertexSizeForAttributes(header->vertex_attrib_flags & mask);
} else {
m_vertex_attribute_offset[i] = -1;
}
mask = (mask << 1) | 1;
}
m_vertex_size = VertexSizeForAttributes(header->vertex_attrib_flags);
}
size_t KRModel::AttributeOffset(__int32_t vertex_attrib, __int32_t vertex_attrib_flags)
{
int mask = 0;
for(int i=0; i < vertex_attrib; i++) {
if(vertex_attrib_flags & (1 << i)) {
mask |= (1 << i);
}
}
return VertexSizeForAttributes(mask);
}
int KRModel::getBoneCount()
{
pack_header *header = getHeader();
return header->bone_count;
}
char *KRModel::getBoneName(int bone_index)
{
return getBone(bone_index)->szName;
}