Files
kraken/kraken/KRShader.cpp

597 lines
28 KiB
C++

//
// KRShader.cpp
// KREngine
//
// Copyright 2012 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KRShader.h"
#include "assert.h"
#include "KRLight.h"
#include "KRDirectionalLight.h"
#include "KRSpotLight.h"
#include "KRPointLight.h"
const char *KRShader::KRENGINE_UNIFORM_NAMES[] = {
"material_ambient", // KRENGINE_UNIFORM_MATERIAL_AMBIENT
"material_diffuse", // KRENGINE_UNIFORM_MATERIAL_DIFFUSE
"material_specular", // KRENGINE_UNIFORM_MATERIAL_SPECULAR
"material_reflection", // KRENGINE_UNIFORM_MATERIAL_REFLECTION
"material_alpha", // KRENGINE_UNIFORM_MATERIAL_ALPHA
"material_shininess", // KRENGINE_UNIFORM_MATERIAL_SHININESS
"light_position", // KRENGINE_UNIFORM_LIGHT_POSITION
"light_direction_model_space", // KRENGINE_UNIFORM_LIGHT_DIRECTION_MODEL_SPACE
"light_direction_view_space", // KRENGINE_UNIFORM_LIGHT_DIRECTION_VIEW_SPACE
"light_color", // KRENGINE_UNIFORM_LIGHT_COLOR
"light_decay_start", // KRENGINE_UNIFORM_LIGHT_DECAY_START
"light_cutoff", // KRENGINE_UNIFORM_LIGHT_CUTOFF
"light_intensity", // KRENGINE_UNIFORM_LIGHT_INTENSITY
"flare_size", // KRENGINE_UNIFORM_FLARE_SIZE
"view_space_model_origin", // KRENGINE_UNIFORM_VIEW_SPACE_MODEL_ORIGIN
"mvp_matrix", // KRENGINE_UNIFORM_MVP
"inv_projection_matrix", // KRENGINE_UNIFORM_INVP
"inv_mvp_matrix", // KRENGINE_UNIFORM_INVMVP
"inv_mvp_matrix_no_translate", // KRENGINE_UNIFORM_INVMVP_NO_TRANSLATE
"model_view_inverse_transpose_matrix", // KRENGINE_UNIFORM_MODEL_VIEW_INVERSE_TRANSPOSE
"model_inverse_transpose_matrix", // KRENGINE_UNIFORM_MODEL_INVERSE_TRANSPOSE
"model_view_matrix", // KRENGINE_UNIFORM_MODEL_VIEW
"model_matrix", // KRENGINE_UNIFORM_MODEL_MATRIX
"projection_matrix", // KRENGINE_UNIFORM_PROJECTION_MATRIX
"camera_position_model_space", // KRENGINE_UNIFORM_CAMERAPOS_MODEL_SPACE
"viewport", // KRENGINE_UNIFORM_VIEWPORT
"viewport_downsample", // KRENGINE_UNIFORM_VIEWPORT_DOWNSAMPLE
"diffuseTexture", // KRENGINE_UNIFORM_DIFFUSETEXTURE
"specularTexture", // KRENGINE_UNIFORM_SPECULARTEXTURE
"reflectionCubeTexture", // KRENGINE_UNIFORM_REFLECTIONCUBETEXTURE
"reflectionTexture", // KRENGINE_UNIFORM_REFLECTIONTEXTURE
"normalTexture", // KRENGINE_UNIFORM_NORMALTEXTURE
"diffuseTexture_Scale", // KRENGINE_UNIFORM_DIFFUSETEXTURE_SCALE
"specularTexture_Scale", // KRENGINE_UNIFORM_SPECULARTEXTURE_SCALE
"reflectionTexture_Scale", // KRENGINE_UNIFORM_REFLECTIONTEXTURE_SCALE
"normalTexture_Scale", // KRENGINE_UNIFORM_NORMALTEXTURE_SCALE
"normalTexture_Scale", // KRENGINE_UNIFORM_AMBIENTTEXTURE_SCALE
"diffuseTexture_Offset", // KRENGINE_UNIFORM_DIFFUSETEXTURE_OFFSET
"specularTexture_Offset", // KRENGINE_UNIFORM_SPECULARTEXTURE_OFFSET
"reflectionTexture_Offset", // KRENGINE_UNIFORM_REFLECTIONTEXTURE_OFFSET
"normalTexture_Offset", // KRENGINE_UNIFORM_NORMALTEXTURE_OFFSET
"ambientTexture_Offset", // KRENGINE_UNIFORM_AMBIENTTEXTURE_OFFSET
"shadow_mvp1", // KRENGINE_UNIFORM_SHADOWMVP1
"shadow_mvp2", // KRENGINE_UNIFORM_SHADOWMVP2
"shadow_mvp3", // KRENGINE_UNIFORM_SHADOWMVP3
"shadowTexture1", // KRENGINE_UNIFORM_SHADOWTEXTURE1
"shadowTexture2", // KRENGINE_UNIFORM_SHADOWTEXTURE2
"shadowTexture3", // KRENGINE_UNIFORM_SHADOWTEXTURE3
"lightmapTexture", // KRENGINE_UNIFORM_LIGHTMAPTEXTURE
"gbuffer_frame", // KRENGINE_UNIFORM_GBUFFER_FRAME
"gbuffer_depth", // KRENGINE_UNIFORM_GBUFFER_DEPTH
"depthFrame", // KRENGINE_UNIFORM_DEPTH_FRAME
"volumetricEnvironmentFrame", // KRENGINE_UNIFORM_VOLUMETRIC_ENVIRONMENT_FRAME
"renderFrame", // KRENGINE_UNIFORM_RENDER_FRAME
"time_absolute", // KRENGINE_UNIFORM_ABSOLUTE_TIME
"fog_near", // KRENGINE_UNIFORM_FOG_NEAR
"fog_far", // KRENGINE_UNIFORM_FOG_FAR
"fog_density", // KRENGINE_UNIFORM_FOG_DENSITY
"fog_color", // KRENGINE_UNIFORM_FOG_COLOR
"fog_scale", // KRENGINE_UNIFORM_FOG_SCALE
"fog_density_premultiplied_exponential", // KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_EXPONENTIAL
"fog_density_premultiplied_squared", // KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_SQUARED
"slice_depth_scale", // KRENGINE_UNIFORM_SLICE_DEPTH_SCALE
"particle_origin", // KRENGINE_UNIFORM_PARTICLE_ORIGIN
"bone_transforms", // KRENGINE_UNIFORM_BONE_TRANSFORMS
"rim_color", // KRENGINE_UNIFORM_RIM_COLOR
"rim_power", // KRENGINE_UNIFORM_RIM_POWER
"fade_color", // KRENGINE_UNIFORM_FADE_COLOR
};
KRShader::KRShader(KRContext &context, char *szKey, std::string options, std::string vertShaderSource, const std::string fragShaderSource) : KRContextObject(context)
{
strcpy(m_szKey, szKey);
m_iProgram = 0;
GLuint vertexShader = 0, fragShader = 0;
try {
const GLchar *vertSource[2] = {options.c_str(), vertShaderSource.c_str()};
const GLchar *fragSource[2] = {options.c_str(), fragShaderSource.c_str()};
// Create shader program.
GLDEBUG(m_iProgram = glCreateProgram());
// Create and compile vertex shader.
GLDEBUG(vertexShader = glCreateShader(GL_VERTEX_SHADER));
GLDEBUG(glShaderSource(vertexShader, 2, vertSource, NULL));
GLDEBUG(glCompileShader(vertexShader));
// Report any compile issues to stderr
GLint logLength = 0;
GLDEBUG(glGetShaderiv(vertexShader, GL_INFO_LOG_LENGTH, &logLength));
if (logLength > 0) {
GLchar *log = (GLchar *)malloc(logLength + 1);
assert(log != NULL);
log[0] = '\0'; // In case glGetShaderInfoLog fails
GLDEBUG(glGetShaderInfoLog(vertexShader, logLength, &logLength, log));
log[logLength] = '\0';
KRContext::Log(KRContext::LOG_LEVEL_ERROR, "KREngine - Failed to compile vertex shader: %s\nShader compile log:\n%s", szKey, log);
free(log);
}
// Create and compile vertex shader.
GLDEBUG(fragShader = glCreateShader(GL_FRAGMENT_SHADER));
GLDEBUG(glShaderSource(fragShader, 2, fragSource, NULL));
GLDEBUG(glCompileShader(fragShader));
// Report any compile issues to stderr
logLength = 0; // In case glGetShaderiv fails
GLDEBUG(glGetShaderiv(fragShader, GL_INFO_LOG_LENGTH, &logLength));
if (logLength > 0) {
GLchar *log = (GLchar *)malloc(logLength + 1);
assert(log != NULL);
log[0] = '\0'; // In case glGetShaderInfoLog fails
GLDEBUG(glGetShaderInfoLog(fragShader, logLength, &logLength, log));
log[logLength] = '\0';
KRContext::Log(KRContext::LOG_LEVEL_ERROR, "KREngine - Failed to compile fragment shader: %s\nShader compile log:\n%s", szKey, log);
free(log);
}
// Attach vertex shader to program.
GLDEBUG(glAttachShader(m_iProgram, vertexShader));
// Attach fragment shader to program.
GLDEBUG(glAttachShader(m_iProgram, fragShader));
// Bind attribute locations.
// This needs to be done prior to linking.
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_VERTEX, "vertex_position"));
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_NORMAL, "vertex_normal"));
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_TANGENT, "vertex_tangent"));
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_TEXUVA, "vertex_uv"));
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_TEXUVB, "vertex_lightmap_uv"));
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_BONEINDEXES, "bone_indexes"));
GLDEBUG(glBindAttribLocation(m_iProgram, KRMesh::KRENGINE_ATTRIB_BONEWEIGHTS, "bone_weights"));
// Link program.
GLDEBUG(glLinkProgram(m_iProgram));
GLint link_success = GL_FALSE;
GLDEBUG(glGetProgramiv(m_iProgram, GL_LINK_STATUS, &link_success));
if(link_success != GL_TRUE) {
// Report any linking issues to stderr
KRContext::Log(KRContext::LOG_LEVEL_ERROR, "KREngine - Failed to link shader program: %s", szKey);
logLength = 0; // In case glGetProgramiv fails
GLDEBUG(glGetProgramiv(m_iProgram, GL_INFO_LOG_LENGTH, &logLength));
if (logLength > 0)
{
GLchar *log = (GLchar *)malloc(logLength + 1);
assert(log != NULL);
log[0] = '\0'; // In case glGetProgramInfoLog fails
GLDEBUG(glGetProgramInfoLog(m_iProgram, logLength, &logLength, log));
log[logLength] = '\0';
KRContext::Log(KRContext::LOG_LEVEL_ERROR, "Program link log:\n%s", log);
free(log);
}
GLDEBUG(glDeleteProgram(m_iProgram));
m_iProgram = 0;
} else {
// Get uniform locations
for(int i=0; i < KRENGINE_NUM_UNIFORMS; i++ ){
GLDEBUG(m_uniforms[i] = glGetUniformLocation(m_iProgram, KRENGINE_UNIFORM_NAMES[i]));
m_uniform_value_index[i] = -1;
}
}
} catch(...) {
if(vertexShader) {
GLDEBUG(glDeleteShader(vertexShader));
vertexShader = 0;
}
if(fragShader) {
GLDEBUG(glDeleteShader(fragShader));
fragShader = 0;
}
if(m_iProgram) {
GLDEBUG(glDeleteProgram(m_iProgram));
m_iProgram = 0;
}
}
// Release vertex and fragment shaders.
if (vertexShader) {
GLDEBUG(glDeleteShader(vertexShader));
}
if (fragShader) {
GLDEBUG(glDeleteShader(fragShader));
}
}
KRShader::~KRShader() {
if(m_iProgram) {
GLDEBUG(glDeleteProgram(m_iProgram));
if(getContext().getShaderManager()->m_active_shader == this) {
getContext().getShaderManager()->m_active_shader = NULL;
}
}
}
void KRShader::setUniform(int location, float value)
{
if(m_uniforms[location] != -1) {
int value_index = m_uniform_value_index[location];
bool needs_update = true;
if(value_index == -1) {
m_uniform_value_index[location] = m_uniform_value_float.size();
m_uniform_value_float.push_back(value);
} else if(m_uniform_value_float[value_index] == value) {
needs_update = false;
} else {
m_uniform_value_float[value_index] = value;
}
if(needs_update) {
GLDEBUG(glUniform1f(m_uniforms[location], value));
}
}
}
void KRShader::setUniform(int location, int value)
{
if(m_uniforms[location] != -1) {
int value_index = m_uniform_value_index[location];
bool needs_update = true;
if(value_index == -1) {
m_uniform_value_index[location] = m_uniform_value_int.size();
m_uniform_value_int.push_back(value);
} else if(m_uniform_value_int[value_index] == value) {
needs_update = false;
} else {
m_uniform_value_int[value_index] = value;
}
if(needs_update) {
GLDEBUG(glUniform1i(m_uniforms[location], value));
}
}
}
void KRShader::setUniform(int location, const KRVector2 &value)
{
if(m_uniforms[location] != -1) {
int value_index = m_uniform_value_index[location];
bool needs_update = true;
if(value_index == -1) {
m_uniform_value_index[location] = m_uniform_value_vector2.size();
m_uniform_value_vector2.push_back(value);
} else if(m_uniform_value_vector2[value_index] == value) {
needs_update = false;
} else {
m_uniform_value_vector2[value_index] = value;
}
if(needs_update) {
GLDEBUG(glUniform2f(m_uniforms[location], value.x, value.y));
}
}
}
void KRShader::setUniform(int location, const KRVector3 &value)
{
if(m_uniforms[location] != -1) {
int value_index = m_uniform_value_index[location];
bool needs_update = true;
if(value_index == -1) {
m_uniform_value_index[location] = m_uniform_value_vector3.size();
m_uniform_value_vector3.push_back(value);
} else if(m_uniform_value_vector3[value_index] == value) {
needs_update = false;
} else {
m_uniform_value_vector3[value_index] = value;
}
if(needs_update) {
GLDEBUG(glUniform3f(m_uniforms[location], value.x, value.y, value.z));
}
}
}
void KRShader::setUniform(int location, const KRVector4 &value)
{
if(m_uniforms[location] != -1) {
int value_index = m_uniform_value_index[location];
bool needs_update = true;
if(value_index == -1) {
m_uniform_value_index[location] = m_uniform_value_vector4.size();
m_uniform_value_vector4.push_back(value);
} else if(m_uniform_value_vector4[value_index] == value) {
needs_update = false;
} else {
m_uniform_value_vector4[value_index] = value;
}
if(needs_update) {
GLDEBUG(glUniform4f(m_uniforms[location], value.x, value.y, value.z, value.w));
}
}
}
void KRShader::setUniform(int location, const KRMat4 &value)
{
if(m_uniforms[location] != -1) {
int value_index = m_uniform_value_index[location];
bool needs_update = true;
if(value_index == -1) {
m_uniform_value_index[location] = m_uniform_value_mat4.size();
m_uniform_value_mat4.push_back(value);
} else if(m_uniform_value_mat4[value_index] == value) {
needs_update = false;
} else {
m_uniform_value_mat4[value_index] = value;
}
if(needs_update) {
GLDEBUG(glUniformMatrix4fv(m_uniforms[location], 1, GL_FALSE, value.c));
}
}
}
bool KRShader::bind(KRCamera &camera, const KRViewport &viewport, const KRMat4 &matModel, const std::vector<KRPointLight *> &point_lights, const std::vector<KRDirectionalLight *> &directional_lights, const std::vector<KRSpotLight *>&spot_lights, const KRNode::RenderPass &renderPass, const KRVector3 &rim_color, float rim_power, const KRVector4 &fade_color) {
if(m_iProgram == 0) {
return false;
}
bool shander_changed = false;
if(getContext().getShaderManager()->m_active_shader != this) {
getContext().getShaderManager()->m_active_shader = this;
GLDEBUG(glUseProgram(m_iProgram));
shander_changed = true;
}
setUniform(KRENGINE_UNIFORM_ABSOLUTE_TIME, getContext().getAbsoluteTime());
int light_directional_count = 0;
//int light_point_count = 0;
//int light_spot_count = 0;
// TODO - Need to support multiple lights and more light types in forward rendering
if(renderPass != KRNode::RENDER_PASS_DEFERRED_LIGHTS && renderPass != KRNode::RENDER_PASS_DEFERRED_GBUFFER && renderPass != KRNode::RENDER_PASS_DEFERRED_OPAQUE && renderPass != KRNode::RENDER_PASS_GENERATE_SHADOWMAPS) {
for(std::vector<KRDirectionalLight *>::const_iterator light_itr=directional_lights.begin(); light_itr != directional_lights.end(); light_itr++) {
KRDirectionalLight *directional_light = (*light_itr);
if(light_directional_count == 0) {
int cShadowBuffers = directional_light->getShadowBufferCount();
if(m_uniforms[KRENGINE_UNIFORM_SHADOWTEXTURE1] != -1 && cShadowBuffers > 0) {
if(m_pContext->getTextureManager()->selectTexture(GL_TEXTURE_2D, 3, directional_light->getShadowTextures()[0])) {
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
}
m_pContext->getTextureManager()->_setWrapModeS(3, GL_CLAMP_TO_EDGE);
m_pContext->getTextureManager()->_setWrapModeT(3, GL_CLAMP_TO_EDGE);
}
if(m_uniforms[KRENGINE_UNIFORM_SHADOWTEXTURE2] != -1 && cShadowBuffers > 1 && camera.settings.m_cShadowBuffers > 1) {
if(m_pContext->getTextureManager()->selectTexture(GL_TEXTURE_2D, 4, directional_light->getShadowTextures()[1])) {
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
}
m_pContext->getTextureManager()->_setWrapModeS(4, GL_CLAMP_TO_EDGE);
m_pContext->getTextureManager()->_setWrapModeT(4, GL_CLAMP_TO_EDGE);
}
if(m_uniforms[KRENGINE_UNIFORM_SHADOWTEXTURE3] != -1 && cShadowBuffers > 2 && camera.settings.m_cShadowBuffers > 2) {
if(m_pContext->getTextureManager()->selectTexture(GL_TEXTURE_2D, 5, directional_light->getShadowTextures()[2])) {
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLDEBUG(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
}
m_pContext->getTextureManager()->_setWrapModeS(5, GL_CLAMP_TO_EDGE);
m_pContext->getTextureManager()->_setWrapModeT(5, GL_CLAMP_TO_EDGE);
}
KRMat4 matBias;
matBias.translate(1.0, 1.0, 1.0);
matBias.scale(0.5);
for(int iShadow=0; iShadow < cShadowBuffers; iShadow++) {
setUniform(KRENGINE_UNIFORM_SHADOWMVP1 + iShadow, matModel * directional_light->getShadowViewports()[iShadow].getViewProjectionMatrix() * matBias);
}
if(m_uniforms[KRENGINE_UNIFORM_LIGHT_DIRECTION_MODEL_SPACE] != -1) {
KRMat4 inverseModelMatrix = matModel;
inverseModelMatrix.invert();
// Bind the light direction vector
KRVector3 lightDirObject = KRMat4::Dot(inverseModelMatrix, directional_light->getWorldLightDirection());
lightDirObject.normalize();
setUniform(KRENGINE_UNIFORM_LIGHT_DIRECTION_MODEL_SPACE, lightDirObject);
}
}
light_directional_count++;
}
//light_point_count = point_lights.size();
//light_spot_count = spot_lights.size();
}
if(m_uniforms[KRENGINE_UNIFORM_CAMERAPOS_MODEL_SPACE] != -1) {
KRMat4 inverseModelMatrix = matModel;
inverseModelMatrix.invert();
if(m_uniforms[KRENGINE_UNIFORM_CAMERAPOS_MODEL_SPACE] != -1) {
// Transform location of camera to object space for calculation of specular halfVec
KRVector3 cameraPosObject = KRMat4::Dot(inverseModelMatrix, viewport.getCameraPosition());
setUniform(KRENGINE_UNIFORM_CAMERAPOS_MODEL_SPACE, cameraPosObject);
}
}
if(m_uniforms[KRENGINE_UNIFORM_MVP] != -1 || m_uniforms[KRShader::KRENGINE_UNIFORM_INVMVP] != -1) {
// Bind our modelmatrix variable to be a uniform called mvpmatrix in our shaderprogram
KRMat4 mvpMatrix = matModel * viewport.getViewProjectionMatrix();
setUniform(KRENGINE_UNIFORM_MVP, mvpMatrix);
if(m_uniforms[KRShader::KRENGINE_UNIFORM_INVMVP] != -1) {
setUniform(KRShader::KRENGINE_UNIFORM_INVMVP, KRMat4::Invert(mvpMatrix));
}
}
if(m_uniforms[KRShader::KRENGINE_UNIFORM_VIEW_SPACE_MODEL_ORIGIN] != -1 || m_uniforms[KRENGINE_UNIFORM_MODEL_VIEW_INVERSE_TRANSPOSE] != -1 || m_uniforms[KRShader::KRENGINE_UNIFORM_MODEL_VIEW] != -1) {
KRMat4 matModelView = matModel * viewport.getViewMatrix();
setUniform(KRENGINE_UNIFORM_MODEL_VIEW, matModelView);
if(m_uniforms[KRShader::KRENGINE_UNIFORM_VIEW_SPACE_MODEL_ORIGIN] != -1) {
KRVector3 view_space_model_origin = KRMat4::Dot(matModelView, KRVector3::Zero()); // Origin point of model space is the light source position. No perspective, so no w divide required
setUniform(KRENGINE_UNIFORM_VIEW_SPACE_MODEL_ORIGIN, view_space_model_origin);
}
if(m_uniforms[KRENGINE_UNIFORM_MODEL_VIEW_INVERSE_TRANSPOSE] != -1) {
KRMat4 matModelViewInverseTranspose = matModelView;
matModelViewInverseTranspose.transpose();
matModelViewInverseTranspose.invert();
setUniform(KRENGINE_UNIFORM_MODEL_VIEW_INVERSE_TRANSPOSE, matModelViewInverseTranspose);
}
}
if(m_uniforms[KRENGINE_UNIFORM_MODEL_INVERSE_TRANSPOSE] != -1) {
KRMat4 matModelInverseTranspose = matModel;
matModelInverseTranspose.transpose();
matModelInverseTranspose.invert();
setUniform(KRENGINE_UNIFORM_MODEL_INVERSE_TRANSPOSE, matModelInverseTranspose);
}
if(m_uniforms[KRShader::KRENGINE_UNIFORM_INVP] != -1) {
setUniform(KRENGINE_UNIFORM_INVP, viewport.getInverseProjectionMatrix());
}
if(m_uniforms[KRShader::KRENGINE_UNIFORM_INVMVP_NO_TRANSLATE] != -1) {
KRMat4 matInvMVPNoTranslate = matModel * viewport.getViewMatrix();;
// Remove the translation
matInvMVPNoTranslate.getPointer()[3] = 0;
matInvMVPNoTranslate.getPointer()[7] = 0;
matInvMVPNoTranslate.getPointer()[11] = 0;
matInvMVPNoTranslate.getPointer()[12] = 0;
matInvMVPNoTranslate.getPointer()[13] = 0;
matInvMVPNoTranslate.getPointer()[14] = 0;
matInvMVPNoTranslate.getPointer()[15] = 1.0;
matInvMVPNoTranslate = matInvMVPNoTranslate * viewport.getProjectionMatrix();
matInvMVPNoTranslate.invert();
setUniform(KRENGINE_UNIFORM_INVMVP_NO_TRANSLATE, matInvMVPNoTranslate);
}
setUniform(KRENGINE_UNIFORM_MODEL_MATRIX, matModel);
if(m_uniforms[KRENGINE_UNIFORM_PROJECTION_MATRIX] != -1) {
setUniform(KRENGINE_UNIFORM_PROJECTION_MATRIX, viewport.getProjectionMatrix());
}
if(m_uniforms[KRENGINE_UNIFORM_VIEWPORT] != -1) {
setUniform(KRENGINE_UNIFORM_VIEWPORT, KRVector4(
(GLfloat)0.0,
(GLfloat)0.0,
(GLfloat)viewport.getSize().x,
(GLfloat)viewport.getSize().y
)
);
}
if(m_uniforms[KRENGINE_UNIFORM_VIEWPORT_DOWNSAMPLE] != -1) {
setUniform(KRENGINE_UNIFORM_VIEWPORT_DOWNSAMPLE, camera.getDownsample());
}
// Rim highlighting parameters
setUniform(KRENGINE_UNIFORM_RIM_COLOR, rim_color);
setUniform(KRENGINE_UNIFORM_RIM_POWER, rim_power);
// Fade parameters
setUniform(KRENGINE_UNIFORM_FADE_COLOR, fade_color);
// Fog parameters
setUniform(KRENGINE_UNIFORM_FOG_NEAR, camera.settings.fog_near);
setUniform(KRENGINE_UNIFORM_FOG_FAR, camera.settings.fog_far);
setUniform(KRENGINE_UNIFORM_FOG_DENSITY, camera.settings.fog_density);
setUniform(KRENGINE_UNIFORM_FOG_COLOR, camera.settings.fog_color);
if(m_uniforms[KRENGINE_UNIFORM_FOG_SCALE] != -1) {
setUniform(KRENGINE_UNIFORM_FOG_SCALE, 1.0f / (camera.settings.fog_far - camera.settings.fog_near));
}
if(m_uniforms[KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_EXPONENTIAL] != -1) {
setUniform(KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_EXPONENTIAL, -camera.settings.fog_density * 1.442695f); // -fog_density / log(2)
}
if(m_uniforms[KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_SQUARED] != -1) {
setUniform(KRENGINE_UNIFORM_DENSITY_PREMULTIPLIED_SQUARED, (float)(-camera.settings.fog_density * camera.settings.fog_density * 1.442695)); // -fog_density * fog_density / log(2)
}
// Sets the diffuseTexture variable to the first texture unit
setUniform(KRENGINE_UNIFORM_DIFFUSETEXTURE, 0);
// Sets the specularTexture variable to the second texture unit
setUniform(KRENGINE_UNIFORM_SPECULARTEXTURE, 1);
// Sets the normalTexture variable to the third texture unit
setUniform(KRENGINE_UNIFORM_NORMALTEXTURE, 2);
// Sets the shadowTexture variable to the fourth texture unit
setUniform(KRENGINE_UNIFORM_SHADOWTEXTURE1, 3);
setUniform(KRENGINE_UNIFORM_SHADOWTEXTURE2, 4);
setUniform(KRENGINE_UNIFORM_SHADOWTEXTURE3, 5);
setUniform(KRENGINE_UNIFORM_REFLECTIONCUBETEXTURE, 4);
setUniform(KRENGINE_UNIFORM_LIGHTMAPTEXTURE, 5);
setUniform(KRENGINE_UNIFORM_GBUFFER_FRAME, 6);
setUniform(KRENGINE_UNIFORM_GBUFFER_DEPTH, 7); // Texture unit 7 is used for reading the depth buffer in gBuffer pass #2 and in post-processing pass
setUniform(KRENGINE_UNIFORM_REFLECTIONTEXTURE, 7); // Texture unit 7 is used for the reflection map textures in gBuffer pass #3 and when using forward rendering
setUniform(KRENGINE_UNIFORM_DEPTH_FRAME, 0);
setUniform(KRENGINE_UNIFORM_RENDER_FRAME, 1);
setUniform(KRENGINE_UNIFORM_VOLUMETRIC_ENVIRONMENT_FRAME, 2);
#if defined(DEBUG)
if(shander_changed) { // FINDME!! KIP!! HACK!!
GLint logLength;
GLint validate_status = GL_FALSE;
GLDEBUG(glValidateProgram(m_iProgram));
GLDEBUG(glGetProgramiv(m_iProgram, GL_VALIDATE_STATUS, &validate_status));
if(validate_status != GL_TRUE) {
KRContext::Log(KRContext::LOG_LEVEL_ERROR, "KREngine - Failed to validate shader program: %s", m_szKey);
logLength = 0; // In case glGetProgramiv fails
GLDEBUG(glGetProgramiv(m_iProgram, GL_INFO_LOG_LENGTH, &logLength));
if (logLength > 0)
{
GLchar *log = (GLchar *)malloc(logLength + 1);
assert(log != NULL);
log[0] = '\0'; // In case glGetProgramInfoLog fails
GLDEBUG(glGetProgramInfoLog(m_iProgram, logLength, &logLength, log));
log[logLength] = '\0';
KRContext::Log(KRContext::LOG_LEVEL_ERROR, "Program validate log:\n%s", log);
free(log);
}
return false;
}
}
#endif
return true;
}
const char *KRShader::getKey() const {
return m_szKey;
}