Files
kraken/kraken/nodes/KRModel.cpp

400 lines
12 KiB
C++
Executable File

//
// KRModel.cpp
// Kraken Engine
//
// Copyright 2025 Kearwood Gilbert. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY KEARWOOD GILBERT ''AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KEARWOOD GILBERT OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The views and conclusions contained in the software and documentation are those of the
// authors and should not be interpreted as representing official policies, either expressed
// or implied, of Kearwood Gilbert.
//
#include "KREngine-common.h"
#include "KRModel.h"
#include "KRContext.h"
#include "resources/mesh/KRMesh.h"
#include "KRNode.h"
#include "KRRenderPass.h"
using namespace hydra;
/* static */
void KRModel::InitNodeInfo(KrNodeInfo* nodeInfo)
{
KRNode::InitNodeInfo(nodeInfo);
nodeInfo->model.faces_camera = false;
nodeInfo->model.light_map_texture = KR_NULL_HANDLE;
nodeInfo->model.lod_min_coverage = 0.0f;
for (int lod = 0; lod < kMeshLODCount; lod++) {
nodeInfo->model.mesh[lod] = KR_NULL_HANDLE;
}
nodeInfo->model.receives_shadow = true;
nodeInfo->model.rim_color = Vector3::Zero();
nodeInfo->model.rim_power = 0.0f;
}
KRModel::KRModel(KRScene& scene, std::string name)
: KRNode(scene, name)
, m_min_lod_coverage(0.0f)
, m_receivesShadow(true)
, m_faces_camera(false)
, m_rim_color(Vector3::Zero())
, m_rim_power(0.0f)
{
m_boundsCachedMat.c[0] = -1.0f;
m_boundsCachedMat.c[1] = -1.0f;
m_boundsCachedMat.c[2] = -1.0f;
m_boundsCachedMat.c[3] = -1.0f;
m_boundsCachedMat.c[4] = -1.0f;
m_boundsCachedMat.c[5] = -1.0f;
m_boundsCachedMat.c[6] = -1.0f;
m_boundsCachedMat.c[7] = -1.0f;
m_boundsCachedMat.c[8] = -1.0f;
m_boundsCachedMat.c[9] = -1.0f;
m_boundsCachedMat.c[10] = -1.0f;
m_boundsCachedMat.c[11] = -1.0f;
m_boundsCachedMat.c[12] = -1.0f;
m_boundsCachedMat.c[13] = -1.0f;
m_boundsCachedMat.c[14] = -1.0f;
m_boundsCachedMat.c[15] = -1.0f;
}
KRModel::KRModel(KRScene& scene, std::string instance_name, std::string model_name[kMeshLODCount], std::string light_map, float lod_min_coverage, bool receives_shadow, bool faces_camera, Vector3 rim_color, float rim_power)
: KRNode(scene, instance_name)
{
m_lightMap.set(light_map);
for (int lod = 0; lod < kMeshLODCount; lod++) {
m_meshes[lod].set(model_name[lod]);
}
m_min_lod_coverage = lod_min_coverage;
m_receivesShadow = receives_shadow;
m_faces_camera = faces_camera;
m_rim_color = rim_color;
m_rim_power = rim_power;
m_boundsCachedMat.c[0] = -1.0f;
m_boundsCachedMat.c[1] = -1.0f;
m_boundsCachedMat.c[2] = -1.0f;
m_boundsCachedMat.c[3] = -1.0f;
m_boundsCachedMat.c[4] = -1.0f;
m_boundsCachedMat.c[5] = -1.0f;
m_boundsCachedMat.c[6] = -1.0f;
m_boundsCachedMat.c[7] = -1.0f;
m_boundsCachedMat.c[8] = -1.0f;
m_boundsCachedMat.c[9] = -1.0f;
m_boundsCachedMat.c[10] = -1.0f;
m_boundsCachedMat.c[11] = -1.0f;
m_boundsCachedMat.c[12] = -1.0f;
m_boundsCachedMat.c[13] = -1.0f;
m_boundsCachedMat.c[14] = -1.0f;
m_boundsCachedMat.c[15] = -1.0f;
}
KRModel::~KRModel()
{
}
KrResult KRModel::update(const KrNodeInfo* nodeInfo)
{
KrResult res = KRNode::update(nodeInfo);
if (res != KR_SUCCESS) {
return res;
}
m_faces_camera = nodeInfo->model.faces_camera;
m_min_lod_coverage = nodeInfo->model.lod_min_coverage;
m_receivesShadow = nodeInfo->model.receives_shadow;
m_rim_color = nodeInfo->model.rim_color;
m_rim_power = nodeInfo->model.rim_power;
KRTexture* light_map_texture = nullptr;
if (nodeInfo->model.light_map_texture != KR_NULL_HANDLE) {
res = m_pContext->getMappedResource<KRTexture>(nodeInfo->model.light_map_texture, &light_map_texture);
if (res != KR_SUCCESS) {
return res;
}
}
m_lightMap.set(light_map_texture);
for (int lod = 0; lod < kMeshLODCount; lod++) {
KRMesh* mesh = nullptr;
if (nodeInfo->model.mesh[lod] != KR_NULL_HANDLE) {
res = m_pContext->getMappedResource<KRMesh>(nodeInfo->model.mesh[lod], &mesh);
if (res != KR_SUCCESS) {
return res;
}
}
m_meshes[lod].set(mesh);
}
return KR_SUCCESS;
}
std::string KRModel::getElementName()
{
return "model";
}
tinyxml2::XMLElement* KRModel::saveXML(tinyxml2::XMLNode* parent)
{
tinyxml2::XMLElement* e = KRNode::saveXML(parent);
e->SetAttribute("mesh", m_meshes[0].getName().c_str());
for (int lod = 1; lod < kMeshLODCount; lod++) {
char attribName[8];
snprintf(attribName, 8, "mesh%i", lod);
e->SetAttribute(attribName, m_meshes[lod].getName().c_str());
}
e->SetAttribute("light_map", m_lightMap.getName().c_str());
e->SetAttribute("lod_min_coverage", m_min_lod_coverage);
e->SetAttribute("receives_shadow", m_receivesShadow ? "true" : "false");
e->SetAttribute("faces_camera", m_faces_camera ? "true" : "false");
kraken::setXMLAttribute("rim_color", e, m_rim_color, Vector3::Zero());
e->SetAttribute("rim_power", m_rim_power);
return e;
}
void KRModel::setRimColor(const Vector3& rim_color)
{
m_rim_color = rim_color;
}
void KRModel::setRimPower(float rim_power)
{
m_rim_power = rim_power;
}
Vector3 KRModel::getRimColor()
{
return m_rim_color;
}
float KRModel::getRimPower()
{
return m_rim_power;
}
void KRModel::setLightMap(const std::string& name)
{
m_lightMap.set(name);
}
std::string KRModel::getLightMap()
{
return m_lightMap.getName();
}
void KRModel::loadModel()
{
bool meshChanged = false;
for (int lod = 0; lod < kMeshLODCount; lod++) {
KRMesh* prevMesh = nullptr;
prevMesh = m_meshes[lod].get();
m_meshes[lod].bind(&getContext());
if (m_meshes[lod].get() != prevMesh) {
meshChanged = true;
}
if (m_meshes[lod].isBound()) {
KRMesh* model = m_meshes[lod].get();
std::vector<KRBone*> model_bones;
int bone_count = model->getBoneCount();
bool all_bones_found = true;
for (int bone_index = 0; bone_index < bone_count; bone_index++) {
KRBone* matching_bone = dynamic_cast<KRBone*>(getScene().getRootNode()->find<KRNode>(model->getBoneName(bone_index)));
if (matching_bone) {
model_bones.push_back(matching_bone);
} else {
all_bones_found = false; // Reject when there are any missing bones or multiple matches
}
}
if (all_bones_found) {
if (m_bones[lod] != model_bones) {
m_bones[lod] = model_bones;
meshChanged = true;
}
} else {
if (!m_bones[lod].empty()) {
m_bones[lod].clear();
meshChanged = true;
}
}
} else {
if (!m_bones[lod].empty()) {
m_bones[lod].clear();
meshChanged = true;
}
}
}
if (meshChanged) {
getScene().notify_sceneGraphModify(this);
invalidateBounds();
}
}
void KRModel::render(KRNode::RenderInfo& ri)
{
KRNode::render(ri);
// Don't render meshes on second pass of the deferred lighting renderer, as only lights will be applied
if (ri.renderPass->getType() != RenderPassType::RENDER_PASS_DEFERRED_LIGHTS
&& ri.renderPass->getType() != RenderPassType::RENDER_PASS_ADDITIVE_PARTICLES
&& ri.renderPass->getType() != RenderPassType::RENDER_PASS_PARTICLE_OCCLUSION
&& ri.renderPass->getType()!= RenderPassType::RENDER_PASS_VOLUMETRIC_EFFECTS_ADDITIVE
&& ri.renderPass->getType() != RenderPassType::RENDER_PASS_SHADOWMAP) {
/*
float lod_coverage = 0.0f;
if(m_models.size() > 1) {
lod_coverage = viewport.coverage(getBounds()); // This also checks the view frustrum culling
} else if(viewport.visible(getBounds())) {
lod_coverage = 1.0f;
}
*/
float lod_coverage = ri.viewport->coverage(getBounds()); // This also checks the view frustrum culling
if (lod_coverage > m_min_lod_coverage) {
// ---===--- Select the best LOD model based on screen coverage ---===---
int bestLOD = -1;
KRMesh* pModel = nullptr;
for (int lod = 0; lod < kMeshLODCount; lod++) {
if (m_meshes[lod].isBound()) {
KRMesh* pLODModel = m_meshes[lod].get();
if ((float)pLODModel->getLODCoverage() / 100.0f > lod_coverage) {
if(bestLOD == -1 || pLODModel->getLODCoverage() < pModel->getLODCoverage()) {
pModel = pLODModel;
bestLOD = lod;
continue;
}
}
}
}
if (m_lightMap.isBound() && ri.camera->settings.bEnableLightMap && ri.renderPass->getType() != RENDER_PASS_SHADOWMAP && ri.renderPass->getType() != RENDER_PASS_SHADOWMAP) {
m_lightMap.get()->requestResidency(lod_coverage, KRTexture::TEXTURE_USAGE_LIGHT_MAP);
// TODO - Vulkan refactoring. We need to bind the shadow map in KRMesh::Render
// m_pContext->getTextureManager()->selectTexture(5, m_pLightMap, lod_coverage, KRTexture::TEXTURE_USAGE_LIGHT_MAP);
}
if (pModel) {
Matrix4 matModel = getModelMatrix();
if (m_faces_camera) {
Vector3 model_center = Matrix4::Dot(matModel, Vector3::Zero());
Vector3 camera_pos = ri.viewport->getCameraPosition();
matModel = Quaternion::Create(Vector3::Forward(), Vector3::Normalize(camera_pos - model_center)).rotationMatrix() * matModel;
}
pModel->render(ri, getName(), matModel, m_lightMap.get(), m_bones[bestLOD], lod_coverage);
}
}
}
}
void KRModel::preStream(const KRViewport& viewport)
{
KRNode::preStream(viewport);
loadModel();
float lod_coverage = viewport.coverage(getBounds());
for (int i = 0; i < kMeshLODCount; i++) {
if (m_meshes[i].isBound()) {
m_meshes[i].get()->preStream(lod_coverage);
}
}
m_lightMap.bind(&getContext());
if (m_lightMap.isBound()) {
m_lightMap.get()->requestResidency(lod_coverage, KRTexture::TEXTURE_USAGE_LIGHT_MAP);
}
}
kraken_stream_level KRModel::getStreamLevel(const KRViewport& viewport)
{
kraken_stream_level stream_level = KRNode::getStreamLevel(viewport);
loadModel();
for (int lod = 0; lod < kMeshLODCount; lod++) {
if (m_meshes[lod].isBound()) {
stream_level = KRMIN(stream_level, m_meshes[lod].get()->getStreamLevel());
}
}
return stream_level;
}
AABB KRModel::getBounds()
{
loadModel();
// Get the bounds of the lowest lod mesh
for(int lod=0; lod<kMeshLODCount; lod++) {
if (!m_meshes[lod].isBound()) {
continue;
}
KRMesh* mesh = m_meshes[lod].get();
if (m_faces_camera) {
AABB normal_bounds = AABB::Create(mesh->getMinPoint(), mesh->getMaxPoint(), getModelMatrix());
float max_dimension = normal_bounds.longest_radius();
return AABB::Create(normal_bounds.center() - Vector3::Create(max_dimension), normal_bounds.center() + Vector3::Create(max_dimension));
} else {
if (!(m_boundsCachedMat == getModelMatrix())) {
m_boundsCachedMat = getModelMatrix();
m_boundsCached = AABB::Create(mesh->getMinPoint(), mesh->getMaxPoint(), getModelMatrix());
}
return m_boundsCached;
}
}
// No models loaded
return AABB::Infinite();
}
bool KRModel::getShaderValue(ShaderValue value, hydra::Vector3* output) const
{
switch (value) {
case ShaderValue::rim_color:
*output = m_rim_color;
return true;
}
return KRNode::getShaderValue(value, output);
}
bool KRModel::getShaderValue(ShaderValue value, float* output) const
{
switch (value) {
case ShaderValue::rim_power:
*output = m_rim_power;
return true;
}
return KRNode::getShaderValue(value, output);
}